The mixed problem for the Helmholtz equation in a multiply connected region
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 8, pp. 127-137
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_8_a12,
     author = {P. A. Krutitskiǐ},
     title = {The mixed problem for the {Helmholtz} equation in a multiply connected region},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {127--137},
     year = {1996},
     volume = {36},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_8_a12/}
}
TY  - JOUR
AU  - P. A. Krutitskiǐ
TI  - The mixed problem for the Helmholtz equation in a multiply connected region
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 127
EP  - 137
VL  - 36
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_8_a12/
LA  - ru
ID  - ZVMMF_1996_36_8_a12
ER  - 
%0 Journal Article
%A P. A. Krutitskiǐ
%T The mixed problem for the Helmholtz equation in a multiply connected region
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 127-137
%V 36
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_8_a12/
%G ru
%F ZVMMF_1996_36_8_a12
P. A. Krutitskiǐ. The mixed problem for the Helmholtz equation in a multiply connected region. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 8, pp. 127-137. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_8_a12/

[1] Vabischevich P. N., Gabov S. A., Shevtsov P. V., “Uglovoi potentsial dlya operatora $\Delta+c(x)$”, Zh. vychisl. matem. i matem. fiz., 19:5 (1979), 1162–1177 | MR

[2] Krutitskii P. A., “Zadacha Dirikhle dlya uravneniya Gelmgoltsa vne razrezov na ploskosti”, Zh. vychisl. matem. i matem. fiz., 34:8–9 (1994), 1237–1258 | MR | Zbl

[3] Krutitskii P. A., “Zadacha Neimana dlya uravneniya Gelmgoltsa vne razrezov na ploskosti”, Zh. vychisl. matem. i matem. fiz., 34:11 (1994), 1652–1665 | MR | Zbl

[4] Wendland W. L., Stephan E. P., “A hypersingular boundary integral method for 2-dimensional screen and crack problems”, Arch. Ration. Mech. and Analys., 112 (1990), 363–390 | DOI | MR | Zbl

[5] Tuchkin Yu. A., “Rasseyanie voln nezamknutym tsilindricheskim ekranom proizvolnogo profilya s granichnym usloviem Neimana”, Dokl. AN SSSR, 293:2 (1987), 343–345 | MR

[6] Zakharov E. V., Sobyanina I. V., “Ob odnomernykh integrodifferentsialnykh uravneniyakh zadach difraktsii na ekranakh”, Zh. vychisl. matem. i matem. fiz., 26:4 (1986), 632–636 | MR | Zbl

[7] Panasyuk V. V., Savruk M. P., Nazarchuk Z. T., Metod singulyarnykh integralnykh uravnenii v dvumernykh zadachakh difraktsii, Nauk. dumka, Kiev, 1984 | MR

[8] Nazarchuk Z. T., Chislennoe issledovanie difraktsii voln na tsilindricheskikh strukturakh, Nauk. dumka, Kiev, 1989 | MR

[9] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[10] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[11] Krein S. G., Funktsionalnyi analiz, Nauka, M., 1964 | Zbl

[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972