@article{ZVMMF_1996_36_7_a9,
author = {V. L. Kamskiǐ and Yu. V. Medvedev and V. S. Filinov},
title = {A method of stochastic dynamics in the {Wigner} formulation of quantum mechanics},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {119--134},
year = {1996},
volume = {36},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a9/}
}
TY - JOUR AU - V. L. Kamskiǐ AU - Yu. V. Medvedev AU - V. S. Filinov TI - A method of stochastic dynamics in the Wigner formulation of quantum mechanics JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1996 SP - 119 EP - 134 VL - 36 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a9/ LA - ru ID - ZVMMF_1996_36_7_a9 ER -
%0 Journal Article %A V. L. Kamskiǐ %A Yu. V. Medvedev %A V. S. Filinov %T A method of stochastic dynamics in the Wigner formulation of quantum mechanics %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1996 %P 119-134 %V 36 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a9/ %G ru %F ZVMMF_1996_36_7_a9
V. L. Kamskiǐ; Yu. V. Medvedev; V. S. Filinov. A method of stochastic dynamics in the Wigner formulation of quantum mechanics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 7, pp. 119-134. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a9/
[1] Feit M. D., Fleck J. A., Steiger A., “Solution of the Schrodinger equation by spectral method”, J. Comput. Phys., 47 (1982), 412–433 | DOI | MR | Zbl
[2] Kosloff R., “Schrodinger equation and Fourier tranform”, J. Chem. Phys., 92 (1988), 2087–2098 | DOI
[3] Kravtsov Yu. A., “Propagation of electromagnetic waves through turbulent atmosphere”, Rept. Progr. Phys., 1 (1992), 39–112 | DOI
[4] Berne B. J., Thirumalai D. A., “Finite-difference approach and moments equation of the wave fields”, Rev. Phys. Chem., 37 (1966), 401–409 | DOI
[5] “Proceedings of the conference on “Frontiers of Quantum Monte Carlo””, J. Statist. Phys., 43:5/6 (1986), 729–1244 | DOI | MR
[6] Zamalin V. M., Norman G. E., Filinov B. C., Metod Monte-Karlo v statisticheskoi termodinamike, Nauka, M., 1977 | MR
[7] Chandler D., “Theory of quantum processes in liquids in Les Houches 1989 session LI”, Liquids, freezing and glass transition (3–28 July 1989), v. I, Noth-Holland etc., 1991, 194–285
[8] Reese T., Miller B. N., “Positronium in xenon: The path-integral approach”, Phys. Rev. E, 47:4 (1993), 2581–2592 | DOI
[9] Morales J. J., Singer K., “Path integral simulation of the free energy of (Lenard-Jones) neon”, Molecular. Phys., 73 (1991), 873–880 | DOI
[10] Marx D., Nielaba P., Binder K., “Path integral Monte Carlo simulations in quantum statistical physics”, Internat. J. Modern. Phys. C, 3 (1992), 337–348 | DOI
[11] Vinogradov A. P., Filinov B. C., “Metod Monte-Karlo dlya raschetov integralov ot kompleksnoznachnykh funktsii i integralov Feinmana”, Dokl AN SSSR, 261 (1981), 333–337 | MR | Zbl
[12] Filinov V. S., “Calculation of the Feynman integrals by means of the Monte Carlo method”, Nucl. Phys. B, 271 (1986), 717–725 | DOI
[13] Makri N., Miller W. H., “Monte Carlo path integration for real time propagator”, J. Chem. Phys., 89 (1988), 2170–2177 | DOI
[14] Doll J. D., Freeman D. L., Gillan M. J., “Stationary phase Monte Carlo method: an exact formulation”, Chem. Phys. Letts., 143 (1988), 277–281 | DOI
[15] Doll J. D., Beck T. L., “Quantum Monte Carlo dynamics: The stationary phase Monte Carlo path integral calculation of finite time correlation functions”, J. Chem. Phys., 89 (1988), 5753–5763 | DOI
[16] Mak C. H., “Stochastic method for real-time path integrations”, Phys. Rev. Letts., 68:7 (1992), 899–902 | DOI
[17] Filinov V. S., “Modifitsirovannye integraly po traektoriyam i metod Monte-Karlo v teorii rasprostraneniya voln v sredakh s diskretnymi rasseivatelyami”, Izv. vuzov. Ser. radiofiz., 34 (1991), 548–558
[18] Filinov V. S., “Modified path integrals and complex Monte Carlo method in the statistical theory of wave propagation in dispersive media”, Waves Random Media, 1 (1991), 141–151 | DOI | Zbl
[19] Car R., Parrinello M., “Unified approach for molecular dynamics and Density-functional theory”, Phys. Rev. Letts., 55:22 (1985), 2471–2474 | DOI
[20] Car R., Parrinello M., Simple molecular systems at very high density, ed. A. Polian, Plenum-Press, Amsterdam etc., 1989, 455–465
[21] Loose W., Ciccotti G., “Temperature and temperature control in nonequilibrium-molecular-dynamics simulations of the shear flow of dense liquids”, Phys. Rev. A, 45 (1992), 3859–3866 | DOI
[22] Azzoaz H., Caillol J. M., Levesque D., Weis J. J., “Phase behaviour of parallel cut spheres. Monte Carlo and integrals equation results”, J. Chem. Phys., 96 (1992), 4551–4558 | DOI
[23] Wigner E., “Quantum statistical mechanics in the phase space”, Phys. Rev., 40 (1932), 749–761 | DOI
[24] Stratonovich R. L., “Kvantovaya teoriya vozmuschenii v fazovom prostranstve”, Zh. eksperim. i teor. fiz., 31 (1956), 1012–1025
[25] Stratonovich R. L., “Uravnenie Vignera-Liuvillya v kvantovoi dinamike”, Dokl. AN SSSR, 109 (1956), 72–86
[26] Shirokov Yu. M., “Teoriya vozmuschenii po postoyannoi Planka”, Teor. i matem. fiz., 31 (1977), 327–332
[27] Shirokov Yu. M., “Edinyi formalizm dlya kvantovoi i klassicheskoi teorii rasseyaniya”, Teor. i matem. fiz., 38 (1979), 313–320 | MR
[28] Berezin F. A., “Kontinualnyi integral v fazovom prostranstve”, Uspekhi fiz. nauk, 132 (1980), 497–548 | MR
[29] Tatarskii V. I., “Vignerovskoe predstavlenie kvantovoi mekhaniki”, Uspekhi fiz. nauk, 139:4 (1983), 587–620 | MR
[30] Singer K., Smith W., “Quantum dynamics and the Wigner-Liouville equation”, Chem. Phys. Letts., 167:4 (1990), 298–304 | DOI
[31] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR