A method of stochastic dynamics in the Wigner formulation of quantum mechanics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 7, pp. 119-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_7_a9,
     author = {V. L. Kamskiǐ and Yu. V. Medvedev and V. S. Filinov},
     title = {A method of stochastic dynamics in the {Wigner} formulation of quantum mechanics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {119--134},
     year = {1996},
     volume = {36},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a9/}
}
TY  - JOUR
AU  - V. L. Kamskiǐ
AU  - Yu. V. Medvedev
AU  - V. S. Filinov
TI  - A method of stochastic dynamics in the Wigner formulation of quantum mechanics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 119
EP  - 134
VL  - 36
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a9/
LA  - ru
ID  - ZVMMF_1996_36_7_a9
ER  - 
%0 Journal Article
%A V. L. Kamskiǐ
%A Yu. V. Medvedev
%A V. S. Filinov
%T A method of stochastic dynamics in the Wigner formulation of quantum mechanics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 119-134
%V 36
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a9/
%G ru
%F ZVMMF_1996_36_7_a9
V. L. Kamskiǐ; Yu. V. Medvedev; V. S. Filinov. A method of stochastic dynamics in the Wigner formulation of quantum mechanics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 7, pp. 119-134. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a9/

[1] Feit M. D., Fleck J. A., Steiger A., “Solution of the Schrodinger equation by spectral method”, J. Comput. Phys., 47 (1982), 412–433 | DOI | MR | Zbl

[2] Kosloff R., “Schrodinger equation and Fourier tranform”, J. Chem. Phys., 92 (1988), 2087–2098 | DOI

[3] Kravtsov Yu. A., “Propagation of electromagnetic waves through turbulent atmosphere”, Rept. Progr. Phys., 1 (1992), 39–112 | DOI

[4] Berne B. J., Thirumalai D. A., “Finite-difference approach and moments equation of the wave fields”, Rev. Phys. Chem., 37 (1966), 401–409 | DOI

[5] “Proceedings of the conference on “Frontiers of Quantum Monte Carlo””, J. Statist. Phys., 43:5/6 (1986), 729–1244 | DOI | MR

[6] Zamalin V. M., Norman G. E., Filinov B. C., Metod Monte-Karlo v statisticheskoi termodinamike, Nauka, M., 1977 | MR

[7] Chandler D., “Theory of quantum processes in liquids in Les Houches 1989 session LI”, Liquids, freezing and glass transition (3–28 July 1989), v. I, Noth-Holland etc., 1991, 194–285

[8] Reese T., Miller B. N., “Positronium in xenon: The path-integral approach”, Phys. Rev. E, 47:4 (1993), 2581–2592 | DOI

[9] Morales J. J., Singer K., “Path integral simulation of the free energy of (Lenard-Jones) neon”, Molecular. Phys., 73 (1991), 873–880 | DOI

[10] Marx D., Nielaba P., Binder K., “Path integral Monte Carlo simulations in quantum statistical physics”, Internat. J. Modern. Phys. C, 3 (1992), 337–348 | DOI

[11] Vinogradov A. P., Filinov B. C., “Metod Monte-Karlo dlya raschetov integralov ot kompleksnoznachnykh funktsii i integralov Feinmana”, Dokl AN SSSR, 261 (1981), 333–337 | MR | Zbl

[12] Filinov V. S., “Calculation of the Feynman integrals by means of the Monte Carlo method”, Nucl. Phys. B, 271 (1986), 717–725 | DOI

[13] Makri N., Miller W. H., “Monte Carlo path integration for real time propagator”, J. Chem. Phys., 89 (1988), 2170–2177 | DOI

[14] Doll J. D., Freeman D. L., Gillan M. J., “Stationary phase Monte Carlo method: an exact formulation”, Chem. Phys. Letts., 143 (1988), 277–281 | DOI

[15] Doll J. D., Beck T. L., “Quantum Monte Carlo dynamics: The stationary phase Monte Carlo path integral calculation of finite time correlation functions”, J. Chem. Phys., 89 (1988), 5753–5763 | DOI

[16] Mak C. H., “Stochastic method for real-time path integrations”, Phys. Rev. Letts., 68:7 (1992), 899–902 | DOI

[17] Filinov V. S., “Modifitsirovannye integraly po traektoriyam i metod Monte-Karlo v teorii rasprostraneniya voln v sredakh s diskretnymi rasseivatelyami”, Izv. vuzov. Ser. radiofiz., 34 (1991), 548–558

[18] Filinov V. S., “Modified path integrals and complex Monte Carlo method in the statistical theory of wave propagation in dispersive media”, Waves Random Media, 1 (1991), 141–151 | DOI | Zbl

[19] Car R., Parrinello M., “Unified approach for molecular dynamics and Density-functional theory”, Phys. Rev. Letts., 55:22 (1985), 2471–2474 | DOI

[20] Car R., Parrinello M., Simple molecular systems at very high density, ed. A. Polian, Plenum-Press, Amsterdam etc., 1989, 455–465

[21] Loose W., Ciccotti G., “Temperature and temperature control in nonequilibrium-molecular-dynamics simulations of the shear flow of dense liquids”, Phys. Rev. A, 45 (1992), 3859–3866 | DOI

[22] Azzoaz H., Caillol J. M., Levesque D., Weis J. J., “Phase behaviour of parallel cut spheres. Monte Carlo and integrals equation results”, J. Chem. Phys., 96 (1992), 4551–4558 | DOI

[23] Wigner E., “Quantum statistical mechanics in the phase space”, Phys. Rev., 40 (1932), 749–761 | DOI

[24] Stratonovich R. L., “Kvantovaya teoriya vozmuschenii v fazovom prostranstve”, Zh. eksperim. i teor. fiz., 31 (1956), 1012–1025

[25] Stratonovich R. L., “Uravnenie Vignera-Liuvillya v kvantovoi dinamike”, Dokl. AN SSSR, 109 (1956), 72–86

[26] Shirokov Yu. M., “Teoriya vozmuschenii po postoyannoi Planka”, Teor. i matem. fiz., 31 (1977), 327–332

[27] Shirokov Yu. M., “Edinyi formalizm dlya kvantovoi i klassicheskoi teorii rasseyaniya”, Teor. i matem. fiz., 38 (1979), 313–320 | MR

[28] Berezin F. A., “Kontinualnyi integral v fazovom prostranstve”, Uspekhi fiz. nauk, 132 (1980), 497–548 | MR

[29] Tatarskii V. I., “Vignerovskoe predstavlenie kvantovoi mekhaniki”, Uspekhi fiz. nauk, 139:4 (1983), 587–620 | MR

[30] Singer K., Smith W., “Quantum dynamics and the Wigner-Liouville equation”, Chem. Phys. Letts., 167:4 (1990), 298–304 | DOI

[31] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR