Dual barrier-projection and barrier-Newton methods for linear programming problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 7, pp. 30-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_7_a3,
     author = {Yu. G. Evtushenko and V. G. Zhadan},
     title = {Dual barrier-projection and {barrier-Newton} methods for linear programming problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {30--45},
     year = {1996},
     volume = {36},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a3/}
}
TY  - JOUR
AU  - Yu. G. Evtushenko
AU  - V. G. Zhadan
TI  - Dual barrier-projection and barrier-Newton methods for linear programming problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 30
EP  - 45
VL  - 36
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a3/
LA  - ru
ID  - ZVMMF_1996_36_7_a3
ER  - 
%0 Journal Article
%A Yu. G. Evtushenko
%A V. G. Zhadan
%T Dual barrier-projection and barrier-Newton methods for linear programming problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 30-45
%V 36
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a3/
%G ru
%F ZVMMF_1996_36_7_a3
Yu. G. Evtushenko; V. G. Zhadan. Dual barrier-projection and barrier-Newton methods for linear programming problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 7, pp. 30-45. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a3/

[1] Karmarkar N., “A new polinomial time algorithm for linear programming”, Combinatorica, 4 (1984), 373–395 | DOI | MR | Zbl

[2] Gonzaga C. C., “Path-following algorithms for linear programming”, SIAM Rev., 34:2 (1992), 167–224 | DOI | MR | Zbl

[3] Dikin I. I., “Iterativnoe reshenie zadach lineinogo i kvadratichnogo programmirovaniya”, Dokl. AN SSSR, 174:4 (1967), 747–748 | MR | Zbl

[4] Barnes E., “A variation on Karmarkar's algorithm for solving linear programming problelms”, Math. Program., 36 (1986), 174–182 | DOI | MR | Zbl

[5] Vanderbei R., Meketon M., Freedman B., “A modification of Karmarkar's linear programming algorithm”, Algorithmica, 1986, no. 1, 395–407 | DOI | MR | Zbl

[6] Bayer D. A., Lagarias J. C., “The nonlinear geometry of linear programming. Affine and projective scaling trajectories”, Trans. Amer. Math. Soc., 314:2 (1989), 499–526 | MR | Zbl

[7] Herzel S., Recchioni M. C., Zirilli F., “A quadratically convergent method for linear programming”, Linear Algebra and its Appl., 152 (1991), 255–289 | DOI | MR | Zbl

[8] Zorkaltsev V. I., “Proektivnye algoritmy optimizatsii, ispolzuyuschie mnozhiteli predyduschikh iteratsii”, Zh. vychisl. matem. i matem. fiz., 34:7 (1994), 1095–1103 | MR

[9] Adler I., Karmarkar N., Resende M. G. C., Veiga G., “An implementation of Karmarkar's algorithm for linear programming”, Math. Program., 44 (1989), 297–335 | DOI | MR | Zbl

[10] Evtushenko Yu. G., Zhadan V. G., “Chislennye metody resheniya nekotorykh zadach issledovaniya operatsii”, Zh. vychisl. matem. i matem. fiz., 13:3 (1973), 583–597

[11] Evtushenko Yu. G., Zhadan V. G., “Relaksatsionnyi metod resheniya zadach nelineinogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 17:4 (1977), 890–904 | MR | Zbl

[12] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[13] Evtushenko Yu. G., Zhadan V. G., “Stable barrier-projection and barrier-Newton methods in nonlinear programming”, Optimizat. Methods and Software, 3:1–3 (1994), 237–256 | DOI | MR

[14] Evtushenko Yu. G., Zhadan V. G., “Stable barrier-projection and barrier-Newton methods in linear programming”, Comput. Optimizat. and Appl., 3 (1994), 289–303 | DOI | MR | Zbl

[15] Evtushenko Yu. G., Zhadan V. G., “Barerno-proektivnye metody resheniya zadach nelineinogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 34:5 (1994), 669–684 | MR | Zbl

[16] Tanabe K., “A Geometric method in nonlinear programming”, J. Optimizat. Theory and Appl., 30:2 (1980), 181–210 | DOI | MR | Zbl