A fast solver for the clamped plate problem in a rectangle based on a boundary potentials method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 7, pp. 174-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_7_a13,
     author = {D. Bahlmann and V. G. Korneev},
     title = {A fast solver for the clamped plate problem in a rectangle based on a boundary potentials method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {174--190},
     year = {1996},
     volume = {36},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a13/}
}
TY  - JOUR
AU  - D. Bahlmann
AU  - V. G. Korneev
TI  - A fast solver for the clamped plate problem in a rectangle based on a boundary potentials method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 174
EP  - 190
VL  - 36
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a13/
LA  - en
ID  - ZVMMF_1996_36_7_a13
ER  - 
%0 Journal Article
%A D. Bahlmann
%A V. G. Korneev
%T A fast solver for the clamped plate problem in a rectangle based on a boundary potentials method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 174-190
%V 36
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a13/
%G en
%F ZVMMF_1996_36_7_a13
D. Bahlmann; V. G. Korneev. A fast solver for the clamped plate problem in a rectangle based on a boundary potentials method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 7, pp. 174-190. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a13/

[1] Korneev V. G., “Primenenie metoda mekhanicheskikh kvadratur dlya postroeniya raznostnoi skhemy dlya ellipticheskikh uravnenii chetvertogo poryadka”, Metody vychisleniya, 7, Izd-vo LGU, L., 1971, 55–76 | MR

[2] Korneev V. G., “Ob iteratsionnom reshenii skhem metoda konechnykh elementov dlya ellipticheskikh uravnenii chetvertogo poryadka”, Chisl. metody mekhan. sploshnoi sredy, 90, no. 6, Novosibirsk, 1978, 85–104 | MR

[3] Korneev V. G., “Setochnye operatory, energeticheski ekvivalentnye porozhdaemym kusochno-ermitovymi rasprostraneniyami”, Zh. vychisl. matem. i matem. fiz., 19:2 (1979), 402–416 | MR | Zbl

[4] Langer U., “Ob iteratsionnom reshenii nekotorykh skhem metoda konechnykh elementov dlya ellipticheskikh uravnenii poryadka $2n$, $n\geqslant2$”, Zh. vychisl. matem. i matem. fiz., 23:4 (1983), 881–891 | MR | Zbl

[5] Langer U., “Bystryi iteratsionnyi metod resheniya pervoi kraevoi zadachi dlya bigarmonicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 28:2 (1988), 209–223 | MR

[6] Ivanov S., Korneev V. G., “Metod bystrogo preobrazovaniya Fure pri reshenii ellipticheskogo uravneniya chetvertogo poryadka”, Vestn. LGU. Ser. matem., mekhan., astron., 1984, no. 3 (13), 29–34

[7] Korneev V. G., Ponomarev S. E., “Reshenie relaksatsionnym metodom skhem MKE dlya ellipticheskikh uravnenii poryadka $2n$”, Chisl. metody mekhan. sploshnoi sredy, 8, no. 7, Novosibirsk, 1977, 72–86 | MR

[8] Korneev V. G., Skhemy metoda konechnykh elementov vysokikh poryadkov tochnosti, Izd-vo LGU, L., 1977 | MR