@article{ZVMMF_1996_36_7_a13,
author = {D. Bahlmann and V. G. Korneev},
title = {A fast solver for the clamped plate problem in a rectangle based on a boundary potentials method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {174--190},
year = {1996},
volume = {36},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a13/}
}
TY - JOUR AU - D. Bahlmann AU - V. G. Korneev TI - A fast solver for the clamped plate problem in a rectangle based on a boundary potentials method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1996 SP - 174 EP - 190 VL - 36 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a13/ LA - en ID - ZVMMF_1996_36_7_a13 ER -
%0 Journal Article %A D. Bahlmann %A V. G. Korneev %T A fast solver for the clamped plate problem in a rectangle based on a boundary potentials method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1996 %P 174-190 %V 36 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a13/ %G en %F ZVMMF_1996_36_7_a13
D. Bahlmann; V. G. Korneev. A fast solver for the clamped plate problem in a rectangle based on a boundary potentials method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 7, pp. 174-190. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_7_a13/
[1] Korneev V. G., “Primenenie metoda mekhanicheskikh kvadratur dlya postroeniya raznostnoi skhemy dlya ellipticheskikh uravnenii chetvertogo poryadka”, Metody vychisleniya, 7, Izd-vo LGU, L., 1971, 55–76 | MR
[2] Korneev V. G., “Ob iteratsionnom reshenii skhem metoda konechnykh elementov dlya ellipticheskikh uravnenii chetvertogo poryadka”, Chisl. metody mekhan. sploshnoi sredy, 90, no. 6, Novosibirsk, 1978, 85–104 | MR
[3] Korneev V. G., “Setochnye operatory, energeticheski ekvivalentnye porozhdaemym kusochno-ermitovymi rasprostraneniyami”, Zh. vychisl. matem. i matem. fiz., 19:2 (1979), 402–416 | MR | Zbl
[4] Langer U., “Ob iteratsionnom reshenii nekotorykh skhem metoda konechnykh elementov dlya ellipticheskikh uravnenii poryadka $2n$, $n\geqslant2$”, Zh. vychisl. matem. i matem. fiz., 23:4 (1983), 881–891 | MR | Zbl
[5] Langer U., “Bystryi iteratsionnyi metod resheniya pervoi kraevoi zadachi dlya bigarmonicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 28:2 (1988), 209–223 | MR
[6] Ivanov S., Korneev V. G., “Metod bystrogo preobrazovaniya Fure pri reshenii ellipticheskogo uravneniya chetvertogo poryadka”, Vestn. LGU. Ser. matem., mekhan., astron., 1984, no. 3 (13), 29–34
[7] Korneev V. G., Ponomarev S. E., “Reshenie relaksatsionnym metodom skhem MKE dlya ellipticheskikh uravnenii poryadka $2n$”, Chisl. metody mekhan. sploshnoi sredy, 8, no. 7, Novosibirsk, 1977, 72–86 | MR
[8] Korneev V. G., Skhemy metoda konechnykh elementov vysokikh poryadkov tochnosti, Izd-vo LGU, L., 1977 | MR