@article{ZVMMF_1996_36_6_a2,
author = {E. E. Tyrtyshnikov},
title = {Parallel methods for generalized {Toeplitz} systems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {5--19},
year = {1996},
volume = {36},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_6_a2/}
}
E. E. Tyrtyshnikov. Parallel methods for generalized Toeplitz systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 6, pp. 5-19. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_6_a2/
[1] Kailath T., Kung S. Y., Morf M., “Displacement ranks of matrices and linear equations”, J. Math. Analys. and Appl., 68:2 (1979), 395–407 | DOI | MR | Zbl
[2] Tyrtyshnikov E. E., “O summakh proizvedenii teplitsevykh matrits”, Vychisl. metody lineinoi algebry, Novosibirsk, 1980, 107–119 | MR | Zbl
[3] Gokhberg I., Sementsul A., “Ob obraschenii konechnykh teplitsevykh matrits i ikh kontinualnykh analogov”, Matem. issl., 1972, no. 2, 201–233
[4] Heinig G., Rost K., Algebraic methods for Toeplitz-like matrices and operators, Acad. Verl., Berlin, 1984 | MR
[5] Tyrtyshnikov E. E., Teplitsevy matritsy, nekotorye ikh analogi i prilozheniya, OVM AN SSSR, M., 1989 | MR
[6] Friedlander B., Morf M., Kailath T., Ljun'g L., “New inversion formulas for matrices classified in term of their distance from Toeplitz matrices”, Linear Algebra and Appl., 27 (1979), 31–60 | DOI | MR | Zbl
[7] Voevodin V. V., Tyrtyshnikov E. E., “Chislennye metody dlya zadach s matritsami tipa teplitsevykh”, Zh. vychisl. matem. i matem. fiz., 21:3 (1981), 531–544 | MR | Zbl
[8] Gohberg I., Kailath T., Koltracht I., “Efficient solution of linear systems of equations with recursive structure”, Linear Algebra and Appl., 80 (1986), 80–113 | DOI | MR | Zbl
[9] Brent R. P., Luk F. T., “A systolic array for the linear-time solution of Toeplitz systems of equations”, J. VLSI and Comput. Syst., 1:1 (1983), 1–22 | Zbl
[10] Krasnov S. A., Tyrtyshnikov E. E., “Vectorized algorithms and systolic arrays for Toeplitz systems of equations”, Sov. J. Numer. Analys. and Math. Model., 2:2 (1987), 83–158 | MR
[11] Tyrtyshnikov E. E., “Constructed approach to develop vectorized and fast algorithms for special-type matrices”, Sov. J. Numer. Analys. and Math. Model., 5 (1988), 409–430 | DOI | MR | Zbl
[12] Tyrtyshnikov E. E., “New approaches to deriving parallel algorithms”, Parallel Computing, 15 (1990), 261–265 | DOI | MR | Zbl
[13] Gohberg I., Kailath T., Koltracht I., Lancaster P., “Linear complexity parallel algorithms for linear systems of equations with recursive structure”, Linear Algebra and Appl., 88/89 (1987), 271–315 | DOI | MR | Zbl
[14] Ammar G. S., Grag W. B., “Superfast solution of real positive definite Toeplitz systems”, SIAM J. Matrix Analys. and Appl., 9:1 (1988), 61–76 | DOI | MR | Zbl
[15] Hoog F., “A new algorithm for solving Toeplitz systems of equations”, Linear Algebra and Appl., 88/89 (1987), 123–138 | DOI | MR | Zbl
[16] Tyrtyshnikov E. E., “Fast algorithms for Toeplitz and quasi Toeplitz systems”, Sov. J. Numer. Analys. and Math. Model., 5 (1989), 138–160 | MR
[17] Chun J., Kailath T., Lev-Ari H., “Fast parallel algorithm for $\mathrm{QR}$ and triangular factorization”, SIAM J. Sci. Statist. Comput., 8:6 (1987), 899–913 | DOI | MR | Zbl
[18] Golub G. H., Van Loan C. F., Matrix computations, 2nd ed., Johns Hopkins Univ. Press, Berkeley, 1989 | MR | Zbl
[19] Cybenko G., “The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems of equations”, SIAM J. Sci. Statist. Comput., 1:3 (1980), 303–319 | DOI | MR | Zbl
[20] Tyrtyshnikov E. E., “A fast and parallel inertia finder for Toeplitz expanded matrices”, East-West J. Numer. Math., 3:4 (1995), 301–316 | MR | Zbl