@article{ZVMMF_1996_36_5_a12,
author = {V. P. Orlov},
title = {Nonlocal solvability of a one-dimensional mathematical model of viscoelasticity},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {114--125},
year = {1996},
volume = {36},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_5_a12/}
}
TY - JOUR AU - V. P. Orlov TI - Nonlocal solvability of a one-dimensional mathematical model of viscoelasticity JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1996 SP - 114 EP - 125 VL - 36 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_5_a12/ LA - ru ID - ZVMMF_1996_36_5_a12 ER -
V. P. Orlov. Nonlocal solvability of a one-dimensional mathematical model of viscoelasticity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 5, pp. 114-125. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_5_a12/
[1] Orlov V. P., Sobolevskii P. E., “Issledovanie nekotorykh matematicheskikh modelei termovyazkouprugosti”, Chisl. metody i optimizatsiya, Valgus, Tallinn, 1988, 144–151
[2] Dyarmati I., Neravnovesnaya termodinamika, Mir, M., 1974
[3] Orlov V. P., Sobolevskii P. E., “Issledovanie matematicheskikh modelei vyazkouprugikh sred”, Dokl. AN USSR. Ser. A, 1989, no. 10, 31–35 | Zbl
[4] Orlov V. P., Sobolevskii P. E., “On mathematical models of viscoelasticity with a memory”, Differenz. and Integr. Equation, 4:1 (1991), 103–115 | MR | Zbl
[5] Orlov V. P., “On the stability of the zero solution of a one-dimensional model of viscoelasticity”, Differenz. and Integr. Equation, 4:1 (1991), 89–101 | MR | Zbl
[6] Besov O. V., Ilin V. P., Nikolskii S. M. i dr., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[7] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vyssh. shkola, M., 1982 | MR | Zbl