Difference schemes with fifth-order compact approximations for three-dimensional viscous gas flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 4, pp. 71-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_4_a8,
     author = {A. I. Tolstykh and D. A. Shirobokov},
     title = {Difference schemes with fifth-order compact approximations for three-dimensional viscous gas flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {71--85},
     year = {1996},
     volume = {36},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_4_a8/}
}
TY  - JOUR
AU  - A. I. Tolstykh
AU  - D. A. Shirobokov
TI  - Difference schemes with fifth-order compact approximations for three-dimensional viscous gas flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 71
EP  - 85
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_4_a8/
LA  - ru
ID  - ZVMMF_1996_36_4_a8
ER  - 
%0 Journal Article
%A A. I. Tolstykh
%A D. A. Shirobokov
%T Difference schemes with fifth-order compact approximations for three-dimensional viscous gas flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 71-85
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_4_a8/
%G ru
%F ZVMMF_1996_36_4_a8
A. I. Tolstykh; D. A. Shirobokov. Difference schemes with fifth-order compact approximations for three-dimensional viscous gas flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 4, pp. 71-85. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_4_a8/

[1] Tolstykh A. I., “Ob odnom metode chislennogo resheniya uravneniya Nave–Stoksa szhimaemogo gaza”, Uch. zap. TsAGI, 6 (1972), 78–87

[2] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1991 | MR | Zbl

[3] Tolstykh A. I., “O nesimmetrichnykh trekhtochechnykh raznostnykh skhemakh chetvertogo i pyatogo poryadkov”, Zh. vychisl. matem. i matem. fiz., 25:8 (1985), 1164–1176 | MR

[4] Garanzha V. A., Tolstykh A. I., “O chislennom modelirovanii nestatsionarnykh techenii zhidkosti na osnove kompaktnykh approksimatsii pyatogo poryadka”, Dokl. AN SSSR, 312:2 (1990), 311–314 | Zbl

[5] Tolstykh A. I., “Ob odnom klasse netsentrirovannykh kompaktnykh raznostnykh skhem pyatogo poryadka, osnovannykh na approksimatsiyakh Pade”, Dokl. AN SSSR, 319:1 (1991), 72–77 | MR | Zbl

[6] Tolstykh A. I., “Ob iteratsionnykh skhemakh s netsentrirovannymi kompaktnymi approksimatsiyami”, Dokl. AN SSSR, 326:3 (1992), 425–431

[7] Steger J. L., Warning R. F., “Flux-vector splitting of the inviscid gasdynamics equations with application to finite difference methods”, J. Comput. Phys., 40 (1981), 263–293 | DOI | MR | Zbl

[8] Zalesak S. T., “Fully multidimensional flux-corrected transport algorithms for fluids”, J. Comput. Phys., 31 (1979), 335–362 | DOI | MR | Zbl

[9] Ravichandran K. S., Steady state calculations using compact upwind schemes for the inviscid and viscous Burger's equation, NAL Techn. Memo. 9201, Bangalore, 1991

[10] Godunov S. K., “Raznostnyi metod dlya chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47 (1959), 271–306 | MR | Zbl

[11] Harten A., “High resolutions schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[12] Mac-Cormack R. W., “A numerical method for solving the equations of compressible viscous flow”, AIAA J., 20 (1982), 1275–1281 | DOI | MR

[13] Jameson A., Numerical solution of the Euler equation for compressible inviscid fluids, Rept. MAE 1643, Prinston Univ., 1987

[14] Savelev A. D., “Raschety techenii vyazkogo gaza na osnove kompaktnykh skhem tretego poryadka”, Zh. vychisl. matem. i matem. fiz., 35:10 (1995), 1538–1552 | MR