A numerical method for solving Euler equations with preservation of approximation on a deformable grid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 3, pp. 117-129
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZVMMF_1996_36_3_a12,
author = {A. V. Rodionov},
title = {A numerical method for solving {Euler} equations with preservation of approximation on a deformable grid},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {117--129},
year = {1996},
volume = {36},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_3_a12/}
}
TY - JOUR AU - A. V. Rodionov TI - A numerical method for solving Euler equations with preservation of approximation on a deformable grid JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1996 SP - 117 EP - 129 VL - 36 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_3_a12/ LA - ru ID - ZVMMF_1996_36_3_a12 ER -
%0 Journal Article %A A. V. Rodionov %T A numerical method for solving Euler equations with preservation of approximation on a deformable grid %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1996 %P 117-129 %V 36 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_3_a12/ %G ru %F ZVMMF_1996_36_3_a12
A. V. Rodionov. A numerical method for solving Euler equations with preservation of approximation on a deformable grid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 3, pp. 117-129. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_3_a12/
[1] Tillyaeva N. I., “Obobschenie modifitsirovannoi skhemy S. K. Godunova na proizvolnye neregulyarnye setki”, Uch. zap. TsAGI, 17:2 (1986), 18–26
[2] Rodionov A. V., “Monotonnaya skhema vtorogo poryadka approksimatsii dlya skvoznogo rascheta neravnovesnykh techenii”, Zh. vychisl. matem. i matem. fiz., 27:4 (1987), 585–593 | MR | Zbl
[3] Rodionov A. V., “Povyshenie poryadka approksimatsii skhemy S. K. Godunova”, Zh. vychisl. matem. i matem. fiz., 27:12 (1987), 1853–1860 | MR | Zbl
[4] Harten A., Osher S., “Uniformly high-order accurate nonoscilatory schemes, I”, SIAM J. Numer. Analys., 24:2 (1987), 287–309 | DOI | MR