@article{ZVMMF_1996_36_3_a10,
author = {Yu. N. Subbotin},
title = {Almost orthogonalization in the finite element method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {101--108},
year = {1996},
volume = {36},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_3_a10/}
}
Yu. N. Subbotin. Almost orthogonalization in the finite element method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 3, pp. 101-108. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_3_a10/
[1] Deklu Zh., Metod konechnykh elementov, Mir, M., 1976
[2] Morozov E. M., Nikimkov G. P., Metod konechnykh elementov v mekhanike razrusheniya, Nauka, M., 1980 | MR
[3] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[4] Korneev V. G., Skhemy metoda konechnykh elementov vysokikh poryadkov tochnosti, Izd-vo LGU, L., 1977 | MR
[5] Gonchar A. A., “Kusochno polinomialnaya approksimatsiya”, Matem. zametki, 11:1 (1972), 129–134 | MR | Zbl
[6] Scherer K., “On optimal global error bounds obtained by scaled local error estimates”, Numer. Math., 36:2 (1981), 151–176 | DOI | MR | Zbl
[7] Gui W., Babyska I., “The $h$-, $p$- and $h-p$-version of the finite element method in one-dimension. Part I: The error analysis of the $p$-version. Part 2: The error analysis of the $h$ and $h-p$-version. Part 3: The adaptive $h-p$-version”, Numer. Math., 49 (1986), 577–683 | DOI | MR
[8] Guo B., Babyska I., “The $h-p$-version of the finite element method, I”, Comput. Mech., 1 (1986), 21–41 | DOI | Zbl
[9] Apanovich V. N., Metod vneshnikh konechno-elementnyx approksimatsii, Vysheish. shkola, Minsk, 1991 | Zbl
[10] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[11] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhteorizdat, M.–L., 1948
[12] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1978