A method for obtaining an initial approximation for Newton's method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 3, pp. 6-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_3_a1,
     author = {K. A. Lebedev},
     title = {A method for obtaining an initial approximation for {Newton's} method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {6--14},
     year = {1996},
     volume = {36},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_3_a1/}
}
TY  - JOUR
AU  - K. A. Lebedev
TI  - A method for obtaining an initial approximation for Newton's method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 6
EP  - 14
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_3_a1/
LA  - ru
ID  - ZVMMF_1996_36_3_a1
ER  - 
%0 Journal Article
%A K. A. Lebedev
%T A method for obtaining an initial approximation for Newton's method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 6-14
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_3_a1/
%G ru
%F ZVMMF_1996_36_3_a1
K. A. Lebedev. A method for obtaining an initial approximation for Newton's method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 3, pp. 6-14. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_3_a1/

[1] Ortega D., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[2] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[3] Ronto V. A., “Ob opredelenii nachalnykh znachenii reshenii nelineinykh kraevykh zadach metodom prodolzheniya po parametru”, Ukr. matem. zh., 32:1 (1980), 128–133 | MR | Zbl

[4] Li T. Y., Sauer T., Yorker J. A., “The cheater's homotopy: an afficiant procedure for solving systems of polinomial equations”, SIAM J. Numer. Analys., 26:5 (1989), 1241–1251 | DOI | MR | Zbl

[5] Morgan A. P., Sommense A. J., Wapler C. W., “Computing singular solutions to nonlinear analytical systems”, Numer. Math., 58 (1991), 669–684 | DOI | MR | Zbl

[6] Gavurin M. K., “Nelineinye funktsionalnye uravneniya i nepreryvnye analogi iterativnykh metodov”, Izv. vuzov. Matematika, 1958, no. 5, 18–31 | MR | Zbl

[7] Zhanlav T., Puzynin I. V., “O skhodimosti iteratsii na osnove nepreryvnogo analoga metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 846–856 | MR | Zbl

[8] Bourji S. K., Walker H. F., “Least-change secant updates of nonsquare matrices”, SIAM J. Numer. Analys., 27:5 (1990), 1263–1294 | DOI | MR | Zbl

[9] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[10] Kulchitskii S. Yu., Shimelevich L. I., “O nakhozhdenii nachalnogo priblizheniya dlya metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 14:4 (1974), 1016–1021

[11] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[12] Demidovich B. P., Maron I. A., Osnovy vychislitelnoi matematiki, Nauka, M., 1966 | MR | Zbl

[13] Berezin I. S., Zhidkov N. P., Metody vychislenii, Nauka, M., 1966

[14] Ermakov V. V., Kalitkin N. N., “Optimalnyi shag i regulyarizatsiya metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 21:2 (1981), 491–497 | MR | Zbl

[15] Lebedev K. A., O vybore khoroshego nachalnogo priblizheniya dlya metoda Nyutona, Dep. v VINITI 01.04.93, No 821-V93

[16] Lebedev K. A., Nikonenko V. V., Zabolotskii V. I., Gnusin N. P., “Statsionarnaya elektrodiffuziya trekh sortov ionov cherez ionoobmennuyu membranu”, Elektrokhimiya, 22:5 (1986), 638–643

[17] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[18] Lebedev K. A., Ob odnoi modifikatsii metoda Nyutona dlya resheniya kraevykh zadach optimalnogo upravleniya, Dep. v VINITI 15.07.88, No 5717-V88