@article{ZVMMF_1996_36_2_a11,
author = {I. V. Savenkov},
title = {On unsteady axisymmetric flows in pipes with elastic walls},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {147--163},
year = {1996},
volume = {36},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_2_a11/}
}
I. V. Savenkov. On unsteady axisymmetric flows in pipes with elastic walls. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 2, pp. 147-163. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_2_a11/
[1] Moreno A. H., Katz A. I., Gold L. D., Reddy R. V., “Mechanics of distension of dog veins and other very thin-walled tubular structures”, Circulaion Res., 27 (1970), 1069–1080
[2] Kececioglu I., McClurken M. E., Kamm R. D., Shapiro A. H., “Steady, supercritical flow in collapsible tubes. Part 1: Experimental observations”, J. Fluid Mech., 109 (1981), 367–389 | DOI
[3] Lyon C. K., Scott J. B., Anderson D. K., Wang C. Y., “Flow through collapsible tubes at high Reynolds numbers”, Circulation Res., 49 (1981), 988–996 | MR
[4] Bertram C. D., “The effect of wall thickness, axial strain and endpoint proximity on the pressure-area relation of collapsible tubes”, J. Biomech., 20 (1987), 863–876 | DOI
[5] McClurken M. E., Kececioglu I., Kamm R. D., Shapiro A. H., “Steady, supercritical flow in collapsible tubes. Part 2: Theoretical studies”, J. Fluid Mech., 109 (1981), 391–415 | DOI
[6] Bertram C. D., Pedley T. J., “A mathematical model of unsteady collapsible tube behaviour”, J. Biomech., 15 (1982), 39–50 | DOI
[7] Shimizu M., Tanida Y., “On the mechanism of Korotkoff sound generation at diastole”, J. Fluid Mech., 127 (1983), 315–339 | DOI
[8] Cancelli C., Pedley T. Y., “A separated-flow model for collapsible-tube oscillations”, J. Fluid Mech., 157 (1985), 375–404 | DOI
[9] Rothmayer A. P., “The viscous flow through symmetric collapsible channels”, Mathematika, 36 (1989), 153–181 | DOI | MR | Zbl
[10] Rothmayer A. P., Levine H. A., “The viscous flow through slightly distorted flexible tube”, Theoret. Comput. Fluid Dynamics, 2 (1991), 193–210 | DOI | Zbl
[11] Smith F. T., “Flow through constricted or dilated pipes and channels, Part 1”, Quart. J. Mech. and Appl. Math., 29:3 (1976), 343–364 | DOI | Zbl
[12] Smith F. T., “Flow through constricted or dilated pipes and channels, Part 2”, Quart. J. Mech. and Appl. Math., 29:3 (1976), 365–376 | DOI | Zbl
[13] Zhuk V. I., Ryzhov O. S., “O lokalno-nevyazkikh vozmuscheniyakh v pogranichnom sloe s samoindutsirovannym davleniem”, Dokl. AN SSSR, 263:1 (1982), 56–59 | MR | Zbl
[14] Smith F. T., Burggraf O. R., “On the development of large-sized short-scaled disturbances in boundary layers”, Proc. Roy. Soc. A, 399:1816 (1985), 25–55 | DOI | Zbl
[15] Zufria J. A., “Symmetry breaking in periodic and solitary gravity-capillary waves on water of finite depth”, J. Fluid Mech., 184 (1987), 183–206 | DOI
[16] Ilichev A. T., Marchenko A. V., “O rasprostranenii dlinnykh nelineinykh voln v tyazheloi zhidkosti pod ledyanym pokrovom”, Izv. AN SSSR. Ser. mekhan. zhidkosti i gaza, 1989, no. 1, 88–95 | MR
[17] Benjamin T. B., Bona J. G., Machony J. J., “Model equation for long waves in nonlinear dispersive systems”, Philos. Trans. Roy. Soc. A, 272 (1972), 47–78 | DOI | MR | Zbl
[18] Lewis J. C., Tijon J. A., “Resonant production of solitons in the $\mathrm{RLW}$ equation”, Phys. Letts. A, 73:4 (1979), 275–279 | DOI | MR
[19] Karimov G. K., Popov S. P., “Chislennoe reshenie regulyarizovannogo dlinnovolnovogo uravneniya”, Soobsch. prikl. matem., VTs AN SSSR, M., 1989
[20] Savenkov I. V., “O vyazkoi neustoichivosti giperzvukovogo obtekaniya klina”, Izv. RAN. Mekhan. zhidkosti i gaza, 1992, no. 2, 55–60 | Zbl
[21] Ryzhov O. S., Terentev E. D., “O perekhodnom rezhime, kharakterizuyuschem zapusk vibratora v dozvukovom pogranichnom sloe na plastinke”, Prikl. matem. i mekhan., 50:6 (1986), 974–986 | Zbl