A survey of methods for constructing structured adaptive grids
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 1, pp. 3-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_1_a0,
     author = {V. D. Liseǐkin},
     title = {A survey of methods for constructing structured adaptive grids},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {3--41},
     year = {1996},
     volume = {36},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_1_a0/}
}
TY  - JOUR
AU  - V. D. Liseǐkin
TI  - A survey of methods for constructing structured adaptive grids
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 3
EP  - 41
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_1_a0/
LA  - ru
ID  - ZVMMF_1996_36_1_a0
ER  - 
%0 Journal Article
%A V. D. Liseǐkin
%T A survey of methods for constructing structured adaptive grids
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 3-41
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_1_a0/
%G ru
%F ZVMMF_1996_36_1_a0
V. D. Liseǐkin. A survey of methods for constructing structured adaptive grids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 1, pp. 3-41. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_1_a0/

[1] Alalykin G. B., Godunov S. K., Kireeva I. L., Pliner L. A., Reshenie odnomernykh zadach gazovoi dinamiki v podvizhnykh setkakh, Nauka, M., 1970 | MR | Zbl

[2] Anischik S. V., Liseikin V. D., “O chislennom reshenii singulyarno-vozmuschennoi zadachi, modeliruyuschei diffuzionno-dreifovye dvizheniya”, Modelirovanie v mekhan., 2, no. 4, VTs ITPM SO AN SSSR, Novosibirsk, 1988, 3–16

[3] Barakhnin V. B., Khakimzyanov G. S., “O primenenii podvizhnykh setok pri chislennom reshenii odnomernykh zadach nakata voln tsunami na bereg”, Vychisl. tekhnologii, 3, no. 9, IVT, Novosibirsk, 1994, 5–15

[4] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[5] Bashurov V. V., “K voprosu o postroenii podvizhnykh raznostnykh setok”, Chisl. metody mekhan. sploshnoi sredy, 17, no. 4, VTs ITPM SO AN SSSR, Novosibirsk, 1986, 27–32

[6] Bashurov V. V., “Invariantnye svoistva modelnogo uravneniya perenosa pri preobrazovaniyakh sistemy koordinat”, Bopr. atomnoi nauki i tekhn., 1989, no. 3, 24–28

[7] Belikov V. V., “Ob odnom metode postroeniya raschetnykh setok”, Zh. vychisl. matem. i matem. fiz., 26:8 (1986), 1262–1266 | Zbl

[8] Belinskii P. P., Godunov S. K., Ivanov Yu. B., Yanenko I. K., “Primenenie odnogo klassa kvazikonformnykh otobrazhenii dlya postroeniya raznostnykh setok v oblastyakh s krivolineinymi koordinatami”, Zh. vychisl. matem. i matem. fiz., 15:6 (1975), 1499–1511 | MR

[9] Belova O. I., Vliyanie sguscheniya setki vblizi poverkhnosti tela na rezultat chislennogo resheniya v zadache obtekaniya, Preprint No 16, In-t prikl. matem. AH CCCP, M., 1988 | Zbl

[10] Borovikov O. A., “Ob optimizatsii raspredeleniya uzlov raznostnoi setki”, Gazodinamika i teploobmen, 1984, no. 8, 102–112

[11] Brish N. I., “O kraevykh zadachakh dlya uravneniya $\varepsilon y''=f(x, y, y')$ pri malykh $\varepsilon$”, Dokl. AH CCCP, 95:3 (1954), 429–432

[12] Vabischevich P. N., “Adaptivnye setki sostavnogo tipa v zadachakh matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 29:6 (1989), 902–914

[13] Voskresenskii G. P., Zabrodin A. V., “Nekotorye voprosy chislennogo modelirovaniya sverkhzvukovogo obtekaniya letatelnykh apparatov”, Uspekhi mekhan., 12:2 (1989), 99–119 | MR

[14] Gaisaryan S. S., “Ob odnom optimalnom algoritme priblizhennogo vychisleniya kvadratur”, Zh. vychisl. matem. i matem. fiz., 9:5 (1969), 1015–1023

[15] Godunov S. K., “Otsenki nevyazok dlya priblizhennykh reshenii prosteishikh uravnenii gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 1:4 (1961), 622–637 | MR | Zbl

[16] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[17] Godunov S. K., Prokopov G. P., “O raschetakh konformnykh otobrazhenii pri postroenii raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 7:5 (1967), 1031–1059 | MR | Zbl

[18] Godunov S. K., Prokopov G. P., “O raschetakh konformnykh otobrazhenii i postroenii raznostnykh setok”, Izv. CO AN CCCP. Cep. tekhn. nauk, 1967, no. 2(8), 12–13

[19] Godunov S. K., Prokopov G. P., “Ob ispolzovanii podvizhnykh setok v gazodinamicheskikh raschetakh”, Zh. vychisl. matem. i matem. fiz., 12:2 (1972), 429–440 | MR | Zbl

[20] Godunov S. K., Romenskii E. I., Chumakov G. A., “Postroenie raznostnykh setok v slozhnykh oblastyakh s pomoschyu kvazikonformnykh otobrazhenii”, Vychisl. probl. v zadachakh matem. fiz., Izd-vo SO AH CCCP, Novosibirsk, 1990, 75–84 | MR

[21] Goloviznin S. M., Simacheva O. G., “Ob odnom metode postroeniya raznostnykh setok v oblastyakh s krivolineinymi granitsami”, Zh. vychisl. matem. i matem. fiz., 23:5 (1983), 1229–1248 | MR

[22] Grebennikov A. I., “O vybore uzlov pri approksimatsii funktsii splainami”, Zh. vychisl. matem. i matem. fiz., 16:1 (1976), 219–223 | MR | Zbl

[23] Gridneva V. A., Merkulova N. N., “O postroenii podvizhnykh setok”, Chisl. metody mekhan. sploshnoi sredy, 14, no. 4, VTs ITPM SO AN SSSR, Novosibirsk, 1983, 34–44

[24] Danaev N. T., “Issledovanie svoistv nekotorykh odnomernykh preobrazovanii”, Chisl. metody mekhan. sploshnoi sredy, 8, no. 4, VTs ITPM SO AN SSSR, Novosibirsk, 1979, 157–163

[25] Danaev N. T., “Ob odnom sposobe postroeniya krivolineinykh setok, sguschayuschikhsya v oblasti bolshikh gradientov”, Chisl. metody mekhan. sploshnoi sredy, 8, no. 4, VTs ITPM SO AN SSSR, Novosibirsk, 1979, 157–163 | MR

[26] Danaev N. T., “Ob odnoi vozmozhnosti chislennogo postroeniya ortogonalnykh setok”, Chisl. metody mekhan. sploshnoi sredy, 14, no. 3, VTs ITPM SO AN SSSR, Novosibirsk, 1983, 42–54

[27] Danaev N. T., Liseikin V. D., Yanenko N. N., “O chislennom reshenii zadachi obtekaniya tela vrascheniya vyazkim teploprovodnym gazom na krivolineinoi podvizhnoi setke”, Chisl. metody mekhan. sploshnoi sredy, 11, no. 1, VTs ITPM SO AN SSSR, Novosibirsk, 1980, 51–61

[28] Darmaev T. G., Liseikin V. D., “Metod postroeniya mnogomernykh adaptivnykh raznostnykh setok”, Modelirovanie v mekhan., 1, no. 1, VTs ITPM SO AN SSSR, Novosibirsk, 1987, 49–57 | MR

[29] Darin N. A., Mazhukin V. I., “Ob odnom podkhode k postroeniyu adaptivnykh setok dlya nestatsionarnykh zadach”, Zh. vychisl. matem. i matem. fiz., 28:3 (1988), 454–460 | MR

[30] Darin N. A., Mazhukin V. I., “Matematicheskoe modelirovanie nestatsionarnykh dvumernykh kraevykh zadach na setkakh s dinamicheskoi adaptatsiei”, Matem. modelirovanie, 1:3 (1989), 29–30 | MR

[31] Darin N. A., Mazhukin V. I., Samarskii A. A., “Konechno-raznostnyi metod resheniya uravnenii gazovoi dinamiki s ispolzovaniem adaptivnykh setok, dinamicheski svyazannykh s resheniem”, Zh. vychisl. matem. i matem. fiz., 28:8 (1988), 1210–1225 | MR

[32] Degtyarev L. M., Drozdov V. V., “Adaptiruyuschiesya k resheniyu setki v ellipticheskikh zadachakh na ploskosti”, Differents. ur-niya, 20:7 (1984), 1194–1203 | MR | Zbl

[33] Degtyarev L. M., Drozdov V. V., Ivanova S. S., “Metod adaptivnykh k resheniyu setok v singulyarno-vozmuschennykh odnomernykh kraevykh zadachakh”, Differents. ur-niya, 23:7 (1987), 1160–1169 | MR | Zbl

[34] Emelyanov K. V., “Primenenie optimalnykh raznostnykh setok k resheniyu zadach s singulyarnym vozmuscheniem”, Zh. vychisl. matem. i matem. fiz., 34:6 (1994), 936–943 | MR

[35] Zharilkasimov A., Liseikin V. D., Skobelev B. Yu., Yanenko N. N., “Primenenie neravnomernoi setki dlya chislennogo resheniya zadachi Orra–Zommerfelda”, Chisl. metody mekhan. sploshnoi sredy, 14, no. 5, VTs ITPM SO AN SSSR, Novosibirsk, 1983, 45–54

[36] Ivanenko S. A., “Adaptivnye setki i setki na poverkhnostyakh”, Zh. vychisl. matem. i matem. fiz., 33:9 (1993), 1333–1351 | MR | Zbl

[37] Ivanenko S. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zh. vychisl. matem. i matem. fiz., 28:4 (1988), 503–514 | MR

[38] Kopchenov V. N., Kraiko A. N., Levin I. P., “K ispolzovaniyu suschestvenno neravnomernykh setok pri chislennom reshenii uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 22:6 (1982), 1457–1467 | MR

[39] Kuznetsov A. Yu., Nikulina N. K., Metody testirovaniya trekhmernykh setok, Preprint No 869, VTs SO AN SSSR, Novosibirsk, 1989 | MR

[40] Kulachkova N. A., Sakhabutdinov Zh. M., “Postroenie raschetnykh setok dlya oblastei slozhnoi konfiguratsii”, Chisl. metody mekhan. sploshnoi sredy, 16, no. 3, VTs ITPM SO AN SSSR, Novosibirsk, 1985, 68–76

[41] Kupin E. P., “O raschetakh obtekaniya aerodinamicheskikh konfiguratsii nevyazkim gazom”, Modelirovanie v mekhan., 2, no. 6, ITPM SO AN SSSR, Novosibirsk, 1988, 69–76

[42] Kupin E. P., Liseikin V. D., “Metod proektsii dlya konstruirovaniya mnogomernykh adaptivnykh setok”, Vychisl. tekhnologii, 3, no. 8, IVT SO RAN, Novosibirsk, 1994, 189–198

[43] Laevskii Yu. M., “Metody razbieniya oblasti pri reshenii dvumernykh parabolicheskikh uravnenii”, Variatsionno-raznostnye metody v zadachakh chisl. analiza, VTs SO RAN, Novosibirsk, 1987, 112–118

[44] Liseikin V. D., “Ob optimalnykh setkakh dlya skhem vtorogo poryadka, approksimiruyuschikh obyknovennye differentsialnye uravneniya”, Chisl. metody mekhan. sploshnoi sredy, 12, no. 1, VTs ITPM SO AH CCCP, Novosibirsk, 1981, 78–81 | MR

[45] Liseikin V. D., “O chislennom reshenii singulyarno-vozmuschennogo uravneniya s tochkoi povorota”, Zh. vychisl. matem. i matem. fiz., 24:12 (1984), 1812–1818 | MR

[46] Liseikin V. D., “O chislennom reshenii uravnenii so stepennym pogransloem”, Zh. vychisl. matem. i matem. fiz., 26:12 (1986), 1813–1820 | MR

[47] Liseikin V. D., “Tekhnologiya konstruirovaniya trekhmernykh setok dlya zadach aerogazodinamiki”, obzor, Vopr. atomnoi nauki i tekhn. Cep. Matem. modelirovanie fiz. protsessov, 3, NII upr. ekonomiki i informatsii, M., 1991, 31–45

[48] Liseikin V. D., “O konstruirovanii regulyarnykh setok na $n$-mernykh poverkhnostyakh”, Zh. vychisl. matem. i matem. fiz., 31:11 (1991), 1670–1683 | MR

[49] Liseikin V. D., Petrenko V. E., Adaptivno-invariantnyi metod chislennogo resheniya zadach s pogranichnymi i vnutrennimi sloyami, VTs SO AN SSSR, Novosibirsk, 1989 | MR

[50] Liseikin V. D., Petrenko V. E., “Ob analiticheskikh i chislennykh issledovaniyakh metoda proektsii dlya postroeniya adaptivnykh setok”, Vychisl. tekhnologii, 3, no. 9, IVT CO RAN, Novosibirsk, 1994, 108–120

[51] Liseikin V. D., Yanenko N. N., “Metod podvizhnykh koordinat v gazovoi dinamike”, Chisl. metody mekhan. sploshnoi sredy, 7, no. 2, VTs ITPM SO AN SSSR, Novosibirsk, 1976, 75–82

[52] Liseikin V. D., Yanenko N. N., “O vybore optimalnykh raznostnykh setok”, Chisl. metody mekhan. sploshnoi sredy, 8, no. 7, VTs ITPM SO AN SSSR, Novosibirsk, 1977, 100–104 | MR

[53] Mazhukin V. N., Takoeva L. Yu., “Printsipy postroeniya dinamicheski adaptiruyuschikhsya k resheniyu setok v odnomernykh kraevykh zadachakh”, Matem. modelirovanie, 2:3 (1990), 101–118 | MR | Zbl

[54] Medvedev A. E., Fomin V. M., “Metod podvizhnykh koordinat v zadachakh mekhaniki sploshnoi sredy”, Prikl. matem. i mekhan., 45:4 (1981), 624–630 | MR | Zbl

[55] Medvedskii R. I., Sigunov Yu. A., “O reshenii odnomernykh nelineinykh zadach teploprovodnosti na izotermicheskoi setke”, Zh. vychisl. matem. i matem. fiz., 29:11 (1989), 1742–1746 | MR

[56] Menshikova V. L., “Ispolzovanie adaptivnykh setok pri raschete dvumernykh neravnovesnykh techenii idealnogo gaza”, Uch. zap. TsAGI, 18:3 (1987), 23–30

[57] Neuvazhaev V. E., Frolov V. D., Yanenko N. N., “Uravneniya dvizheniya teploprovodnogo gaza v smeshannykh eilero-lagranzhevykh koordinatakh”, Chisl. metody mekhan. sploshnoi sredy, 3, no. 1, VTs SO AN SSSR, Novosibirsk, 1972, 90–96

[58] Pavlov B. M., “Metody teoreticheskogo issledovaniya sverkhzvukovogo obtekaniya zatuplennykh tel potokom vyazkogo gaza”, Vychisl. metody i programmirovanie, XV, Izd-vo MGU, M., 1970, 181–287

[59] Polezhaev V. N., Prostomolotov A. N., Fedoseev A. I., “Metod konechnykh elementov v mekhanike vyazkoi zhidkosti”, Itogi nauki i tekhn. Mekhan. zhidkosti i gaza, 21, VINITI, M., 1987, 3–92

[60] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka, Novosibirsk, 1977 | MR

[61] Potapkin A. V., “Ob ispolzovanii sguschayuschikhsya setok v raschetakh techenii s bolshimi gradientami”, Chisl. metody mekhan. sploshnoi sredy, 14, no. 3, VTs ITPM SO AN SSSR, Novosibirsk, 1983, 126–139

[62] Prokopov G. P., “Ob organizatsii sravneniya algoritmov i programm postroeniya regulyarnykh dvumernykh raznostnykh setok”, Bonp. atomnoi nauki i tekhn. Cep. Matem. modelirovanie fiz. protsessov, 3, NII upr. ekon. i informatsii, M., 1989, 98–107

[63] Sapozhnikov D. V., Khakimzyanov G. S., “O primenenii metoda ekviraspredeleniya pri reshenii nestatsionarnykh zadach”, Vychisl. tekhnologii, 2, no. 7, IVT, Novosibirsk, 1993, 165–173

[64] Sakhabutdinov Zh. M., Petrov G. A., Maigurova S. V., “Postroenie i optimizatsiya trekhmernykh krivolineinykh setok”, Vopr. atomnoi nauki i tekhn. Cep. Matem. modelirovanie fiz. protsessov, 1, NII upr. ekon. i informatsii, M., 1989, 9–18

[65] Sidorov A. F., “Ob odnom algoritme rascheta optimalnykh raznostnykh setok”, Tr. MIAN SSSR, 24, M., 1966, 147–151 | MR

[66] Sidorov A. F., Ushakova O. V., “Ob odnom algoritme postroeniya optimalnykh adaptiruyuschikhsya setok i ego prilozheniyakh”, Chisl. metody mekhan. sploshnoi sredy, 16, no. 5, VTs ITPM SO AN SSSR, Novosibirsk, 1985, 101–119 | MR

[67] Sidorov A. F., Shabashova T. I., “Ob odnom metode rascheta optimalnykh raznostnykh setok dlya mnogomernykh oblastei”, Chisl. metody mekhan. sploshnoi sredy, 12, no. 5, VTs ITPM SO AN SSSR, Novosibirsk, 1981, 106–123

[68] Sofronov I. D., Rasskazova V. V., Nesterenko L. V., “Neregulyarnye setki v metodakh rascheta dvumernykh nestatsionarnykh zadach gazovoi dinamiki”, Vopr. matem. modelirovaniya, vychisl. matem. i informatiki, Min. RF atomnoi energii, M.–Arzamas-16, 1994, 131–183

[69] Sorokin A. M., “Postroenie raschetnykh setok dlya zadach ploskikh transzvukovykh techenii”, Uch. zap. TsAGI, 17:3 (1986), 115–120

[70] Tikhonov A. N., Gorbunov A. D., “Otsenki pogreshnosti metodov Runge–Kutta i vybor optimalnykh setok”, Zh. vychisl. matem. i matem. fiz., 4:2 (1964), 232–242 | MR

[71] Tolstykh A. N., “O metode chislennogo resheniya uravnenii Nave-Stoksa szhimaemogo gaza v shirokom diapazone chisel Reinoldsa”, Dokl. AH CCCP, 210:1 (1973), 48–51

[72] Tolstykh A. N., “O sguschenii uzlov raznostnykh setok v protsesse resheniya i o primenenii skhem povyshennoi tochnosti pri chislennom issledovanii techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 18:1 (1978), 139–153

[73] Ushakova O. B., “Ob odnoi iteratsionnoi skheme resheniya uravneniya s malym parametrom na adaptiruyuscheisya setke”, Analit. i chisl. metody issledovaniya zadach mekhan. sploshnoi sredy, 8, no. 4, UNTs AH CCCP, Sverdlovsk, 1987, 157–163

[74] Ushakova O. V., “Teorema suschestvovaniya i edinstvennosti resheniya kraevoi zadachi postroeniya odnomernykh optimalnykh adaptiruyuschikhsya setok”, Modelirovanie v mekhan., 3, no. 2, VTs ITPM SO AN SCCP, Novosibirsk, 1989, 134–141 | MR

[75] Shabashova T. I., “O postroenii optimalnykh krivolineinykh koordinatnykh setok v trekhmernykh oblastyakh”, Chisl. metody mekhan. sploshnoi sredy, 17, no. 1, VTs ITPM SO AN SSSR, Novosibirsk, 1986, 144–155

[76] Shirokovskaya O. S., “Zamechanie k state: A. F. Sidorov, Ob odnom algoritme rascheta optimalnykh raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 9:2 (1969), 468–469 | Zbl

[77] Shishkin G. I., “Raznostnaya approksimatsiya singulyarno vozmuschennoi kraevoi zadachi dlya kvazilineinykh ellipticheskikh uravnenii, vyrozhdayuschikhsya v uravnenie pervogo poryadka”, Zh. vychisl. matem. i matem. fiz., 32:4 (1992), 550–566 | MR | Zbl

[78] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992

[79] Shokin Yu. I., Urusov A. I., Ob odnom metode postroeniya podvizhnykh setok dlya uravnenii giperbolicheskogo tipa, Preprint No 28, ITPM SO AN SSSR, Novosibirsk, 1981

[80] Yanenko N. N., “Problemy vychislitelnoi mekhaniki”, Chisl. metody dinamiki vyazkoi zhidkosti, ITPM SO AN SSSR, Novosibirsk, 1983, 3–13

[81] Yanenko N. N., Danaev N. T., Liseikin V. D., “O variatsionnom metode postroeniya setok”, Chisl. metody mekhan. sploshnoi sredy, 8, no. 4, ITPM SO AN SSSR, Novosibirsk, 1977, 157–163 | MR

[82] Yanenko N. N., Frolov V. D., Neuvazhaev V. E., “O primenenii metoda rasschepleniya dlya chislennogo rascheta dvizhenii teploprovodnogo gaza v krivolineinykh koordinatakh”, Izv. CO AH CCCP, 1967, no. 8(2), 74–82

[83] Ablow C. M., Schechter S., “Campylotropic coordinates”, J. Comput. Phys., 27 (1978), 351–362 | DOI | MR | Zbl

[84] Adjerid S., Flaherty J. E., “A moving element method with error estimation and refinement for one-dimensional time dependent partial differential equations”, SIAM J. Numer. Analys., 23 (1986), 778–796 | DOI | MR | Zbl

[85] Allwright S. E., “Techniques in multiblock domain decomposition and surface grid generation”, Numer. Grid Generat. Comput. Fluid Mech., Pineridge Press, 1988, 559–568

[86] Anderson D. A., Adaptive grid methods for partial differential equations, ASME, New York, 1983

[87] Anderson D. A., “Constructing adaptive grids with Poisson grid generation”, Numer. Grid Generat. Comput. Fluid Dynamics, Pineridge, Swansea, U.K., 1986, 125–136

[88] Anderson D. A., Adaptive grid scheme controlling cell area/volume, AIAA paper No 87-0202, 1987

[89] Anderson D. A., “Equidistribution schemes. Poisson generators and adaptive grids”, Appl. Math. Comput., 24:3 (1987), 211–227 | DOI | MR | Zbl

[90] Anderson D. A., Steinbrenner J., Generating adaptive grids with a conventional grid scheme, AIAA paper No 86-0427, 1986

[91] Andrews A. E., “Progress and challenges in the application of artificial intelligence to computational fluid dynamics”, AIAA Journal, 26:1 (1988), 40–46 | DOI

[92] Andrews A. E., “Knowledge based flow fluid zoning”, Numer. Grid Generat. Comput. Fluid Mech., Pineridge Press, 1988, 559–568

[93] Babuska I., Miller A., Vogelius M., “Adaptive method and error estimation for elliptic problems of structural mechanics”, Adaptive Comput. Methods for Partial Different. Equations, SIAM, Philadelphia, 1983, 57–79 | MR

[94] Babuska I., Rheinholdt W. C., “A-posteriory error estimates for the finite element method”, Internat. J. Numer. Meth. in Engng., 12 (1978), 1597–1615 | DOI | Zbl

[95] Barfield W. D., “An optimal mesh generator for Lagrangian hydrodynamic calculations in two space dimensions”, J. Comput. Phys., 6:3 (1970), 417–429 | DOI | MR | Zbl

[96] Bell J. B., Shubin G. R., “An adaptive grid finite difference method for conservation laws”, J. Comput. Phys., 52:3 (1983), 569–591 | DOI | Zbl

[97] Bell J. B., Shubin G. R., Stephens A. B., “A segmentation approach to grid generation using biharmonics”, J. Comput. Phys., 47:3 (1982), 463–472 | DOI | MR | Zbl

[98] Bloffner F. G., “Variable grid scheme applied to turbulent boundary layers”, Comput. Meth. Appl. Mech. Engng., 4:9 (1974), 179–194 | MR

[99] Boor C., “Good approximation by splines with variable knots”, Lect. Notes Math., 363, 1974, 12–20 | MR | Zbl

[100] Boris J. P., “New directions in computational fluid dynamics”, Ann. Rev. Fluid Mech., 21 (1985), 345–385 | DOI | MR

[101] Brackbill J. U., “An adaptive grid with directional control”, J. Comput. Phys., 108:1 (1993), 38–50 | DOI | MR | Zbl

[102] Brackbill J. U., Saltzman J., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46:3 (1982), 342–368 | DOI | MR | Zbl

[103] Carey G. F., “Adaptive refinement and nonlinear fluid problems”, Comput. Meth. Appl. Mech. Engng., 17/18 (1979), 541–560 | DOI | Zbl

[104] Carter J. E., Edward D. E., Werle M. J., “Coordinate transformation for laminar and turbulent boundary layers”, AIAA Journal, 20:2 (1982), 282–284 | DOI

[105] Chapmen D. R., “Trends and pacing items in computational aerodynamics”, Lect. Notes Phys., 141, 1980, 1–12

[106] Christov C. I., “Orthogonal coordinate meshes with manageable Jacobian”, Numer. Grid Generat., 1982, 885–894 | MR | Zbl

[107] Corocco L., Lo strato limite laminare nei gas, Accoc. curtunal Aeronautica, Roma, 1946

[108] Crowley W. P., An equipotential zoner on a quadrilateral mesh, Memo, Lawrence Livermore Nat. Lab., July 5, 1962

[109] Daly B. J., “A numerical study of pulsative flow through constricted arteries”, Lect. Notes Phys., 35, 1975, 117 | MR | Zbl

[110] Dannerhoffer J. F., A composition of adaptive-grid redistribution and embedding for steady transonic flows, AIAA paper No 90-1965, 1990

[111] Davis S. F., Flaherty J. E., “An adaptive finite element method for initial-boundary-value problems for partial differential equations”, SIAM J. Sci. Statist. Comput., 3 (1982), 6–27 | DOI | MR | Zbl

[112] Denny V. E., Landis R. B., “A new method for solving two-point boundary value problems using optimal node distribution”, J. Comput. Phys., 9:1 (1972), 120–137 | DOI | MR | Zbl

[113] Dorfi E. A., Drury L. O'C., “Simple adaptive grids for 1-$d$ initial value problems”, J. Comput. Phys., 69:1 (1987), 175–195 | DOI | Zbl

[114] Dvinsky A. S., “Adaptive grid generation for harmonic maps on Riemannian manifolds”, J. Comput. Phys., 95:2 (1991), 450–476 | DOI | MR | Zbl

[115] Dwyer H. A., Kee R. J., Sanders B. R., “Adaptive grid method for problems in fluid mechanics and heal transfer”, AIAA Journal, 18 (1980), 1205–1212 | DOI | MR | Zbl

[116] Dwyer H. A., Sanders B. R., Dropleat heating and vaporization at high Reynolds and Peclet numbers, AIAA paper No 83-1706, 1983

[117] Eells J., Lenaire L., “Another report on harmonic maps”, Bull. London Math. Soc., 20:5 (1988), 385–524 | DOI | MR | Zbl

[118] Eiseman P. R., “A coordinate system for a viscous transonic cascade analysis”, J. Comput. Phys., 26:3 (1978), 307–338 | DOI | Zbl

[119] Eiseman P. R., “Grid generation for fluid mechanics computations”, Ann. Rev. Fluid Mech., 17 (1985), 487–522 | DOI | Zbl

[120] Eiseman P. R., “Alternating direction adaptive grid generation”, AIAA Journal, 23:4 (1985), 551–560 | DOI | Zbl

[121] Eiseman P. R., “Adaptive grid generation”, Comput. Meth. Appl. Mech. Engng., 64 (1987), 321–376 | DOI | MR | Zbl

[122] Eriksson L.-E., “Practical three-dimensional mesh generation using transfinite interpolation”, SIAM J. Sci. and Statist. Comput., 6:3 (1985), 712–742 | DOI | MR

[123] Flores J., “Transonic Navier-Stokes solutions for a fighter-line configuration”, J. Aircraft, 21:11 (1984), 858–865 | DOI

[124] Giannakopoulos A. E., Engel A. J., “Directional control in grid generation”, J. Comput. Phys., 74:3 (1988), 422–439 | DOI | Zbl

[125] Ghia K., Ghia U., Shin C. C., “Adaptive grid generation for flows with local high gradient regions”, Advances in Grid Generation, ASME-FED, ASME, New York, 1983, 35–48

[126] Ghia U., Ghia K. N., Rubin S. G., Knosla P. K., “Study of incompressible flow separation using primitive variables”, Comput. and Fluids, 9:2 (1981), 123–142 | DOI | Zbl

[127] Gordon W. J., Hall C., “Construction of curvilinear coordinate systems and application to mesh generation”, Internat. J. Numer. Meth. Engng., 7 (1973), 461–477 | DOI | MR | Zbl

[128] Cough D. O., Spiegel E. A., Toomre J., “Highly stretched meshes as functionals of solutions”, Lect. Notes Phys., 35:1 (1975), 191–196

[129] Greenberg J. B., “A new self-adaptive grid method”, AIAA Journal, 23:2 (1985), 317–320 | DOI | Zbl

[130] Guruswamy S. P., “Unsteady aerodynamic and aeroelastic calculations for wings using Euler equations”, AIAA Journal, 28:3 (1990), 461–469 | DOI

[131] Harten A., Hyman J. M., “A self-adjusting grid for the computation of weak solutions of hyperbolic conservation laws”, J. Comput. Phys., 50 (1983), 235–269 | DOI | MR | Zbl

[132] Haussling H. J., “Boundary-fitted coordinates for accurate numerical solution of multibody flow problems”, J. Comput. Phys., 30 (1979), 107–124 | DOI | MR | Zbl

[133] Hawken D. F., Gottlieb J. J., Hansen J. S., “Review article. Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations”, J. Comput. Phys., 95:2 (1991), 254–302 | DOI | MR | Zbl

[134] Hedstrom G. W., Rodrigue G. K., “Adaptive grid methods for time-dependent partial differential equations”, Lect. Notes Math., 960, 1982, 474–484 | MR | Zbl

[135] Hegna H. A., Numerical prediction of dynamic forces on arbitrary pitched airfoils in turbulent flow, AIAA paper No 282-0092, 1982

[136] Hindman R. G., Spencer J., A new approach to truly adaptive grid generation, AIAA paper No 83-0450, 1983

[137] Jacquotte O.-P., “A mechanical model for a new grid, generation method in computational fluid dynamics”, Comput. Meth. Appl. Mech. Engng., 66:3 (1988), 323–338 | DOI | MR | Zbl

[138] Jordan S. A., Spaulding M. L., “A fast algorithm for grid generation”, J. Comput. Phys., 104:1 (1993), 118–128 | DOI | Zbl

[139] Kerlick C. D., Klopfer G. K., “Assesing the quality of curvilinear coordinate meshes by decomposing the jacobian matrix”, Appl. Meth. Comput., 10–11 (1982), 787–807 | DOI | MR | Zbl

[140] Kim H. J., Thompson J. F., “Three-dimensional adaptive grid generation on a composite block grid”, AIAA Journal, 28:3 (1990), 470–477 | DOI | Zbl

[141] Klopfer G. H., McRae D. D., The nonlinear modified equation approacht o analyzing finite difference schemes, AIAA paper No 81-1029, 1981

[142] Knight D. D., “Numerical simulation of realistic high-speed inlets using the Navier-Stokes equations”, AIAA Journal, 15:11 (1977), 1583–1589 | DOI

[143] Kutler P., “A perspective of the theoretical and applied computational fluid dynamics”, AIAA Journal, 23:3 (1985), 328–341 | DOI | MR

[144] Kutler P., “Multidisciplinary computational aerosciences”, Proc. 5th Internat. Symp., CFD JSCFD (Sendai, 1993), v. 2, 109–119

[145] Lee D., Tsuei Y. M., “A hybrid adaptive gridding procedure for recirculating fluid flow problems”, J. Comput. Phys., 108:1 (1993), 122–141 | DOI | Zbl

[146] Lentini M.. Pereyra V., “An adaptive finite difference solver for nonlinear two-point boundary problems with mild boundary layers”, SIAM J. Numer. Analys., 14 (1977), 91 | DOI | MR | Zbl

[147] Liseikin V. D., “Estimates for derivatives of solutions to differential equations with boundary and interior layers”, Siberian. Math. Journal, 1993, July, 1039–1051 | MR

[148] Liseikin V. D., “On some interpretations of a smoothness functional used in constructing regular adaptive grids”, Russ. J. Numer. Analys. Math. Modelling, 8:6 (1993), 507–518 | DOI | MR | Zbl

[149] Liseikin V. D., Yanenko N. N., “On the numerical solution of equations with interior and boundary layers on a nonuniform mesh”, BAIL III Proc. 3rd Internat. Conf. Boundary and Interior Layers (Dublun), 1984, 68–80 | MR

[150] Marchant M. J.. Weatherill N. P., “Adaptivity techniques for compressible inviscid flows”, Comput. Meth. Appl. Mech. Engng., 106:3 (1993), 83–106 | DOI | Zbl

[151] Mastin C. W., Thompson J. F., “Discrete quasiconformal mappings”, J. Appl. Math. Phys., 29:1 (1978), 1–11 | DOI | MR | Zbl

[152] McCrory R. L., Orszag S. A., “Spectral methods for multidimensional diffusion problems”, J. Comput. Phys., 37:1 (1980), 93–112 | DOI | MR | Zbl

[153] Middlecoff J. F., Thomas P. D., “Direct control of the grid point distribution in meshes generated by elliptic equations”, AIAA Journal, 18:6 (1980), 652–656 | DOI | MR

[154] Miller K., “Alternate codes to control the nodes in the moving finite element method”, Adaptive Comput. Meth. Partial Different. Equation, SIAM, Philadelphia, 1983, 165–181 | MR

[155] Miller K., Miller R. N., “Moving finite elements. I; II”, SIAM J. Numer. Analys., 18:6 (1981), 1019–1057 | DOI | MR

[156] Miki K., Takagi T., “A domain decomposition and overlapping method for the generation of three-dimensional boundary-fitted coordinate systems”, J. Comput. Phys., 53:2 (1984), 319–330 | DOI | MR | Zbl

[157] Moretti G., Salas M. D., The blunt body problem for a viscous rarefied gas flow, AIAA paper No 69-139, 1969 | Zbl

[158] Morrison D., “Optimal mesh size in the numerical integration of an ordinary differential equation”, J. Assoc. Comput. Machinery, 9:1 (1962), 98–103 | MR | Zbl

[159] Nakahashi K., Deivert G. S., “Three-dimensional adaptive grid method”, AIAA Journal, 1986, no. 6, 948–954 | DOI

[160] Nakamura S., “Marching grid generation using parabolic partial differential equations”, Appl. Math. Comput., 10–11 (1982), 775–786 | DOI | MR | Zbl

[161] Nakamura S., “Adaptive grid relocation algorithms for transonic full potential calculations using one-dimensional or two-dimensional diffusion equations”, Advances in Grid Generat., ASME Fluids Engng. Conf. (Houston, 1983)

[162] Oh Y. H., An analytical transformation technique for generating uniformly spaced computational mesh, WNGG-NASA, 1980, 385 pp.

[163] Palmerio B., Dersieux A., “Application of a FEM moving node adaptive method to accurate shock capturing”, Numer. Grid Generat. Comput. Fluid Dynamics, Pineridge, Swansea, U.K., 1986, 425–436

[164] Pereyra V., Sewell E. G., “Mesh selection for discrete solution of boundary-value problems in ordinary differential equations”, Numer. Math., 23 (1975), 261–268 | DOI | MR | Zbl

[165] Pierson B. L., Kutler P., “Optimal nodal point distribution for improved accuracy in computational fluid dynamics”, AIAA Journal, 18 (1980), 49–54 | DOI

[166] Piva R., Di Carlo A., Favini B., Guj G., “Adaptive curvilinear grids for large Reynolds number viscous flows”, Lect. Notes Phys., 170, 1982, 414–419

[167] Rai M. M., Anderson D. A., “Grid evolution in time asymptotic problems”, J. Comput. Phys., 43 (1981), 327–344 | DOI

[168] Rai M. M., Anderson D. A., “Application of adaptive grids to fluid flow problems with asymptotic solutions”, AIAA Journal, 20 (1982), 496–502 | DOI | Zbl

[169] Rheinboldt W. C., “Adaptive mesh refinement process for finite element solutions”, Internat. J. Numer. Meth. in Engng., 17 (1981), 649–662 | DOI | MR | Zbl

[170] Rheinboldt W. C., “Feedback systems and adaptivity for numerical computations”, Adaptive Comput. Methods for Partial Different. Equations, SIAM, Philadelphia, 1983, 3–19 | MR

[171] Russel R. D., Christiansen J., “Adaptive mesh selection strategies for solving boundary value problems”, SIAM J. Numer. Analys., 15 (1978), 59–80 | DOI | MR | Zbl

[172] Ryskin G., Leal L. G., “Orthogonal mapping”, J. Comput. Phys., 50:1 (1983), 71–100 | DOI | MR | Zbl

[173] Salari K., Steinberg S., “Flux-corrected transport in a moving grid”, J. Comput. Phys., 111:1 (1994), 24–32 | DOI | Zbl

[174] Saltzman J., “Variational methods for generating meshes on surfaces in three-dimensions”, J. Comput. Phys., 63:1 (1986), 1–19 | DOI | MR | Zbl

[175] Sanz-Serra J. M., Christie I., “A simple adaptive technique for nonlinear wave problems”, J. Comput. Phys., 67:2 (1986), 348–360 | DOI | MR

[176] Schiff L. B., “A numerical solution of the axisimmetric jet counterflow problem”, Lect. Notes Phys., 59, 1976, 391 | Zbl

[177] Schuster D., Vadyak Y., Atta E., Static aeroelastic analysis of fighter aircraft using a three-dimensional Navier–Stokes algorithm, AIAA paper No 90-0435, 1990

[178] Schwarz W., “Elliptic grid generation system for three-dimensional configurations using Poisson's equation”, Numer. Grid Generat. Comput. Fluid Dynamics (Landshut, 1986), 341–351

[179] Serezhnikova T. I., Sidorov A. F., Ushakova O. V., “On one method of construction of optimal curvilinear grids and its applications”, Soviet. J. Numer. Analys. Math. Modelling, 4:1 (1989), 137–155 | DOI | MR | Zbl

[180] Shan C.-J., Reed H. L., Foley T. A., “Shepard's interpolation for solution-adaptive methods”, J. Comput. Phys., 106:1 (1993), 52–61 | DOI | MR

[181] Shephard M. S., Grice K. R., Lo J. A., Schroeder W. J., “Trends in automatic three-dimensional mesh generation”, Comput. and Structures, 30:1/2 (1988), 421–429 | DOI

[182] Shokin Yu. I., Urusov A. I., “On the construction of adaptive algorithms for unsteady problems of gasdynamics in arbitrary coordinate systems”, Lect. Notes. Phys., 170, 1982, 481–485

[183] Starius G., “On composite mesh difference methods for hyperbolic difference equations”, Numer. Math., 35:3 (1980), 241–255 | DOI | MR | Zbl

[184] Steger J. L., Chaussee D. S., “Generation of body fitted coordinates using hyperbolic partial differential equations”, SIAM J. Scient. Statist. Comput., 1:4 (1980), 431–437 | DOI | MR | Zbl

[185] Steger J. L., Sorenson R., “Automatic mesh-point clustering near a boundary in grid generation with elliptic partial differential equations”, J. Comput. Phys., 33:3 (1979), 405–416 | DOI | MR

[186] Steinberg S., Roache P. J., “Variational grid generation”, Numer. Meth. Partial Different. Equations, 2 (1986), 71–96 | DOI | MR | Zbl

[187] Steinberg S., Roache P. J., “Anomalies in grid generation on curves”, J. Comput. Phys., 91:2 (1990), 255–277 | DOI | MR | Zbl

[188] Steinbrenner J. P., Anderson D. A., “Three-dimensional parametric block grid generation with localized solution adaption”, Numer. Grid Generat. Comput. Fluid Mech., Pineridge Press, London, 1988, 539–548

[189] Takagi T., Miki K., Chen B. C. J., Sha W. T., “Numerical generation of boundary-fitted curvilinear coordinate systems for arbitrarily curved surfaces”, J. Comput. Phys., 98:1 (1985), 67–79 | DOI

[190] Thacher W. C., “A brief review of techniques for generating irregular computational grids”, Internat. J. Numer. Meth. Engng., 15:9 (1980), 1335–1342 | DOI | Zbl

[191] Thomas P. D., Construction of composite three-dimensional grids from subregion grids generated by elliptic systems, AIAA paper No 81-0996, 1981

[192] Thompson J. F., “Grid generation techniques in computational dynamics”, AIAA Journal, 22 (1984), 1505–1523 | DOI | Zbl

[193] Thompson J. F., “A survey of dynamically adaptive grids in the numerical solution of partial differential equations”, Appl. Numer. Math., 1 (1985), 3–27 | DOI | MR | Zbl

[194] Thompson J. F., Thames F. C., Mastin C. W., “TOMCAT — A code for numerical generation of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional bodies”, J. Comput. Phys., 24:2 (1977), 274–302 | DOI | Zbl

[195] Thompson J. F., Warsi Z. U. A., Three-dimensional grid generation from elliptic systems, AIAA paper No 83-1905, 1983

[196] Thompson J. F., Warsi Z. U. A., Mastin C. W., “Boundary-fitted coordinate system for numerical solution of partial differential equations — a review”, J. Comput. Phys., 47:1 (1982), 1–108 | DOI | MR | Zbl

[197] Thompson J. F., Warsi Z. U. A., Mastin C. W., Numerical grid generation. Foundations and applications, North-Holland, New York, 1985 | MR | Zbl

[198] Tu Y., Thompson J. F., “Three-dimensional solution-adaptive grid generation on composite configurations”, AIAA Journal, 29:12 (1991), 2025–2026 | DOI | Zbl

[199] Vinokur M., “On one-dimensional stretching functions for finite-difference calculations”, J. Comput. Phys., 50:2 (1983), 215–234 | DOI | MR | Zbl

[200] Viviand N., Ghazzi W., “Numerical solution of the compressible Navier-Stokes equations at high Reynolds numbers with application to the blunt body problem”, Lect. Notes Phys., 59, 1976, 434 | Zbl

[201] Vogel A. A., “Automated domain decomposition for computational fluid dynamics”, Comput. and Fluids, 18:4 (1990), 329–346 | DOI | Zbl

[202] Vulanovic K., “Mesh construction for numerical solution of a type of singular perturbation problems”, Numer. Meth. Approx. Theory, 1984, 137–142 | MR | Zbl

[203] Warsi Z. U. A., “Basic differential models for coordinate generation”, Numer. Grid Generation, North Holland, New York, 1982, 41–78 | MR

[204] Warsi Z. U. A., Thompson J. F., “Application of variational methods in the fixed and adaptive grid generation”, Comput. Math. Appl., 19:8/9 (1990), 31–41 | DOI | MR | Zbl

[205] Wathen A. J., “Optimal moving grids for time-dependent partial differential equations”, J. Comput. Phys., 101:1 (1990), 51–54 | DOI | MR

[206] Weatherill N. P., “Mixed structured-unstructured meshes for aerodynamic flow simulation”, Aeronautical J., 94:934 (1990), 111–123

[207] White A. B., Jr., “On selection of equidistributing meshes for two-point boundary-value problems”, SIAM J. Numer. Analys., 16:3 (1979), 472–502 | DOI | MR | Zbl

[208] White A. B., Jr., “On the numerical solution of initial boundary-value problems in one space dimension”, SIAM J. Numer. Analys., 19:4 (1982), 683–697 | DOI | MR | Zbl

[209] Wilkins L., “Use of artificial viscosity in multidimensional fluid dynamic calculations”, J. Comput. Phys., 36 (1980), 281–303 | DOI | MR | Zbl

[210] Winkler K.-H., Mihalas D., Norman M. L., “Adaptive grid methods with asymmetric time-filtering”, Comput. Phys. Communs., 36 (1985), 121–140 | DOI

[211] Winslow A. M., Adaptive mesh zoning by the equipotential method, UCID-19062, 1981 | Zbl

[212] Winslow A. M., “Equipotential zoning of two-dimensional meshes”, J. Comput. Phys., 1:2 (1967), 149–172 | DOI | MR

[213] Yanenko N. N., Kovenya V. B., Liseikin V. D. et al., “On some methods for the numerical simulation of flows with complex structure”, Comput. Meth. Appl. Mech. Engng., 17/18 (1979), 659–671 | DOI | MR | Zbl