@article{ZVMMF_1996_36_12_a10,
author = {I. V. Egorov and D. V. Ivanov},
title = {The use of fully implicit monotone schemes to model plane internal flows},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {91--107},
year = {1996},
volume = {36},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a10/}
}
TY - JOUR AU - I. V. Egorov AU - D. V. Ivanov TI - The use of fully implicit monotone schemes to model plane internal flows JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1996 SP - 91 EP - 107 VL - 36 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a10/ LA - ru ID - ZVMMF_1996_36_12_a10 ER -
%0 Journal Article %A I. V. Egorov %A D. V. Ivanov %T The use of fully implicit monotone schemes to model plane internal flows %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1996 %P 91-107 %V 36 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a10/ %G ru %F ZVMMF_1996_36_12_a10
I. V. Egorov; D. V. Ivanov. The use of fully implicit monotone schemes to model plane internal flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 12, pp. 91-107. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a10/
[1] Lapin Yu. V., Nekhamkina O. A., Pospelov V. A. i dr., “Chislennoe modelirovanie vnutrennikh techenii vyazkikh khimicheski reagiruyuschikh gazovykh smesei”, Itogi nauki i tekhn. Ser. Mekhan. zhidkosti i gaza, 19, VINITI, M., 1985, 86–104
[2] MacCormack R. W., The effect of viscosity in hypervelocity impact cratering, AIAA Paper No 354, 1969, 7 pp.
[3] Douglas J., Gunn J. E., “A general formulation of alternating direction implicit methods. Part 1: Parabolic and hyperbolic problems”, Numer. Math., 6:5 (1964), 428–453 | DOI | MR | Zbl
[4] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR | Zbl
[5] Tolstykh A. I., “O neyavnykh skhemakh povyshennoi tochnosti dlya sistem uravnenii”, Zh. vychisl. matem. i matem. fiz., 21:2 (1981), 339–354 | MR | Zbl
[6] Egorov I. V., Zaitsev O. L., “Ob odnom podkhode k chislennomu resheniyu dvumernykh uravnenii Nave–Stoksa metodom skvoznogo scheta”, Zh. vychisl. matem. i matem. fiz., 31:2 (1991), 286–299 | MR
[7] McRae D. S., Orkwis P. D., “Newton's method solver for high-speed viscous separated flowfields”, AIAA Journal, 30:1 (1991), 78–85
[8] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77
[9] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:2 (1983), 357–393 | DOI | MR | Zbl
[10] Yegorov I. V., Zaitsev O. L., “Development of efficient algorithms for computational fluid dynamic problems”, Proc. 5th Internat. Symp. Comput. Fluid Dynamics (Sendai, Japan, 1993), v. 3, 393–400
[11] Vnukov A. E., Postroenie raschetnykh setok okolo aerodinamicheskikh profilei na osnove diskretnogo preobrazovaniya Kristoffelya–Shvartsa, Preprint No 35, TsAGI, M., 1991, 15 pp.
[12] Godunov S. K., “Konechno-raznostnyi metod dlya chislennogo rascheta razryvnykh reshenii dlya uravnenii gazovoi dinamiki”, Matem. sb., 47 (1959), 271–291 | MR
[13] Roe P. L., “Approximate Riemann solvers, parameter vectors, and difference scheme”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl
[14] Karimov T. Kh., “O nekotorykh iteratsionnykh metodakh resheniya nelineinykh uravnenii v gilbertovom prostranstve”, Dokl. AN SSSR, 269:5 (1983), 1038–1042 | MR | Zbl
[15] Lipton R. J., Rose D. J., Tarjan R. E., “Generalized nested dissection”, SIAM J. Numer. Analys., 16:2 (1979), 346–358 | DOI | MR | Zbl