The use of fully implicit monotone schemes to model plane internal flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 12, pp. 91-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_12_a10,
     author = {I. V. Egorov and D. V. Ivanov},
     title = {The use of fully implicit monotone schemes to model plane internal flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {91--107},
     year = {1996},
     volume = {36},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a10/}
}
TY  - JOUR
AU  - I. V. Egorov
AU  - D. V. Ivanov
TI  - The use of fully implicit monotone schemes to model plane internal flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 91
EP  - 107
VL  - 36
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a10/
LA  - ru
ID  - ZVMMF_1996_36_12_a10
ER  - 
%0 Journal Article
%A I. V. Egorov
%A D. V. Ivanov
%T The use of fully implicit monotone schemes to model plane internal flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 91-107
%V 36
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a10/
%G ru
%F ZVMMF_1996_36_12_a10
I. V. Egorov; D. V. Ivanov. The use of fully implicit monotone schemes to model plane internal flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 12, pp. 91-107. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a10/

[1] Lapin Yu. V., Nekhamkina O. A., Pospelov V. A. i dr., “Chislennoe modelirovanie vnutrennikh techenii vyazkikh khimicheski reagiruyuschikh gazovykh smesei”, Itogi nauki i tekhn. Ser. Mekhan. zhidkosti i gaza, 19, VINITI, M., 1985, 86–104

[2] MacCormack R. W., The effect of viscosity in hypervelocity impact cratering, AIAA Paper No 354, 1969, 7 pp.

[3] Douglas J., Gunn J. E., “A general formulation of alternating direction implicit methods. Part 1: Parabolic and hyperbolic problems”, Numer. Math., 6:5 (1964), 428–453 | DOI | MR | Zbl

[4] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR | Zbl

[5] Tolstykh A. I., “O neyavnykh skhemakh povyshennoi tochnosti dlya sistem uravnenii”, Zh. vychisl. matem. i matem. fiz., 21:2 (1981), 339–354 | MR | Zbl

[6] Egorov I. V., Zaitsev O. L., “Ob odnom podkhode k chislennomu resheniyu dvumernykh uravnenii Nave–Stoksa metodom skvoznogo scheta”, Zh. vychisl. matem. i matem. fiz., 31:2 (1991), 286–299 | MR

[7] McRae D. S., Orkwis P. D., “Newton's method solver for high-speed viscous separated flowfields”, AIAA Journal, 30:1 (1991), 78–85

[8] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[9] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:2 (1983), 357–393 | DOI | MR | Zbl

[10] Yegorov I. V., Zaitsev O. L., “Development of efficient algorithms for computational fluid dynamic problems”, Proc. 5th Internat. Symp. Comput. Fluid Dynamics (Sendai, Japan, 1993), v. 3, 393–400

[11] Vnukov A. E., Postroenie raschetnykh setok okolo aerodinamicheskikh profilei na osnove diskretnogo preobrazovaniya Kristoffelya–Shvartsa, Preprint No 35, TsAGI, M., 1991, 15 pp.

[12] Godunov S. K., “Konechno-raznostnyi metod dlya chislennogo rascheta razryvnykh reshenii dlya uravnenii gazovoi dinamiki”, Matem. sb., 47 (1959), 271–291 | MR

[13] Roe P. L., “Approximate Riemann solvers, parameter vectors, and difference scheme”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[14] Karimov T. Kh., “O nekotorykh iteratsionnykh metodakh resheniya nelineinykh uravnenii v gilbertovom prostranstve”, Dokl. AN SSSR, 269:5 (1983), 1038–1042 | MR | Zbl

[15] Lipton R. J., Rose D. J., Tarjan R. E., “Generalized nested dissection”, SIAM J. Numer. Analys., 16:2 (1979), 346–358 | DOI | MR | Zbl