Algorithms of isogeometric approximation by generalized cubic splines
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 12, pp. 3-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_12_a0,
     author = {B. I. Kvasov},
     title = {Algorithms of isogeometric approximation by generalized cubic splines},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {3--22},
     year = {1996},
     volume = {36},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a0/}
}
TY  - JOUR
AU  - B. I. Kvasov
TI  - Algorithms of isogeometric approximation by generalized cubic splines
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 3
EP  - 22
VL  - 36
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a0/
LA  - ru
ID  - ZVMMF_1996_36_12_a0
ER  - 
%0 Journal Article
%A B. I. Kvasov
%T Algorithms of isogeometric approximation by generalized cubic splines
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 3-22
%V 36
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a0/
%G ru
%F ZVMMF_1996_36_12_a0
B. I. Kvasov. Algorithms of isogeometric approximation by generalized cubic splines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 12, pp. 3-22. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a0/

[1] de Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR | Zbl

[2] Beatson R. K., Wolkowitz H., “Post-processing piecewise cubics for monotonicity”, SIAM J. Numer. Analys., 26 (1989), 480–502 | DOI | MR | Zbl

[3] Gregory J. A., “Shape preserving spline interpolation”, Computer Aided Design., 18 (1986), 53–57 | DOI

[4] Sakai M., Lopes de Silanes M. C., “A simple rational spline and its application to monotone interpolation to monotonic data”, Numer. Math., 50 (1986), 171–182 | DOI | MR | Zbl

[5] Schaback R., “Adaptive rational splines”, Constructive Approximation, 6 (1990), 167–179 | DOI | MR | Zbl

[6] McCartin B. J., “Computation of exponential splines”, SIAM J. Sci. Stat. Comput., 11:2 (1990), 242–262 | DOI | MR | Zbl

[7] Miroshnichenko V. L., “Convex and monotone spline interpolation”, Konstruktivnaya teoriya funktsii' 84, Sofiya, 1984, 610–620 | Zbl

[8] Grebennikov A. I., Metod splainov i reshenie zadach teorii priblizhenii, Izd-vo MGU, M., 1983 | Zbl

[9] Schmidt W. J., Scholz I., “A dual algorithm for convex-concave data smoothing by cubic $C^2$-splines”, Numer. Math., 57 (1990), 330–350 | DOI | MR

[10] Grebennikov A. I., “Metod posledovatelnykh sglazhivanii i splain-algoritmy obrabotki eksperimentalnykh dannykh”, Chisl. analiz. Metody, algoritmy, prilozheniya, Izd-vo MGU, M., 1985, 65–71

[11] Kvasov B. I., Yatsenko S. A., Algoritmy izogeometricheskoi approksimatsii ratsionalnymi splainami, Preprint No 9-90, In-t teor. i prikl. mekhan. SO AN SSSR, Novosibirsk, 1990

[12] Kvasov B. I., Vanin L. A., “Rational $B$-splines and algorithms of isogeometric local approximation”, Russ. J. Numer. Analys. Math. Modelling, 8:6 (1993), 483–506 | DOI | MR | Zbl

[13] Kvasov B. I., Yatsenko S. A., “Izogeometricheskaya interpolyatsiya ratsionalnymi splainami”, Approksimatsiya splainami, Vychisl. sistemy, 121, Novosibirsk, 1987, 11–36 | MR | Zbl

[14] Shokin Yu. I., Intervalnyi analiz, Nauka, Novosibirsk, 1981 | Zbl

[15] Zavyalov Yu. S., “O teorii obobschennykh kubicheskikh splainov”, Priblizhenie splainami, Vychisl. sistemy, 137, Novosibirsk, 1990, 58–90 | MR

[16] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[17] Späth H., Eindimensionale Spline-interpolations-algorithmen, R. Oldenbourg Verlag, München, 1990 | MR

[18] Koch P. E., Lyche T., “Interpolation with exponential $B$-splines in tension”, Comput. Suppl., 8 (1993), 173–190 | MR | Zbl

[19] Pruess S., “Alternatives to the exponential spline in tension”, Math. Comput., 33:148 (1979), 1273–1281 | DOI | MR | Zbl

[20] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl

[21] Gordon W. J., “Spline-blended surface interpolation through curve networks”, J. Math. and Mech., 18:10 (1969), 951–952 | MR

[22] Späth H., “Exponential spline interpolation”, Computing, 4 (1969), 225–233 | DOI | MR

[23] Späth H., Spline-algorithmen zur Konstruktion glatter Kurven und Flächen, R. Oldenbourg Verlag, München, 1986 | MR

[24] Akima H., “A new method of interpolation and smooth curve fitting based on local procedures”, J. Assoc. Comput. Mach., 17 (1970), 589–602 | Zbl

[25] Fritsch F. N., Carlson R. E., “Monotone piecewise cubic interpolation”, SIAM J. Numer. Analys., 17:2 (1980), 238–246 | DOI | MR | Zbl

[26] Kvasov N. I., Yatsenko S. A., “The algorithms of conservative local curve and surface approximation”, Conf. on Curves, Surfaces, CAGD, and Image Processing (Biri, Norway, June 20–25, 1991), 71 | Zbl