@article{ZVMMF_1996_36_12_a0,
author = {B. I. Kvasov},
title = {Algorithms of isogeometric approximation by generalized cubic splines},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {3--22},
year = {1996},
volume = {36},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a0/}
}
TY - JOUR AU - B. I. Kvasov TI - Algorithms of isogeometric approximation by generalized cubic splines JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1996 SP - 3 EP - 22 VL - 36 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a0/ LA - ru ID - ZVMMF_1996_36_12_a0 ER -
B. I. Kvasov. Algorithms of isogeometric approximation by generalized cubic splines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 12, pp. 3-22. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_12_a0/
[1] de Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR | Zbl
[2] Beatson R. K., Wolkowitz H., “Post-processing piecewise cubics for monotonicity”, SIAM J. Numer. Analys., 26 (1989), 480–502 | DOI | MR | Zbl
[3] Gregory J. A., “Shape preserving spline interpolation”, Computer Aided Design., 18 (1986), 53–57 | DOI
[4] Sakai M., Lopes de Silanes M. C., “A simple rational spline and its application to monotone interpolation to monotonic data”, Numer. Math., 50 (1986), 171–182 | DOI | MR | Zbl
[5] Schaback R., “Adaptive rational splines”, Constructive Approximation, 6 (1990), 167–179 | DOI | MR | Zbl
[6] McCartin B. J., “Computation of exponential splines”, SIAM J. Sci. Stat. Comput., 11:2 (1990), 242–262 | DOI | MR | Zbl
[7] Miroshnichenko V. L., “Convex and monotone spline interpolation”, Konstruktivnaya teoriya funktsii' 84, Sofiya, 1984, 610–620 | Zbl
[8] Grebennikov A. I., Metod splainov i reshenie zadach teorii priblizhenii, Izd-vo MGU, M., 1983 | Zbl
[9] Schmidt W. J., Scholz I., “A dual algorithm for convex-concave data smoothing by cubic $C^2$-splines”, Numer. Math., 57 (1990), 330–350 | DOI | MR
[10] Grebennikov A. I., “Metod posledovatelnykh sglazhivanii i splain-algoritmy obrabotki eksperimentalnykh dannykh”, Chisl. analiz. Metody, algoritmy, prilozheniya, Izd-vo MGU, M., 1985, 65–71
[11] Kvasov B. I., Yatsenko S. A., Algoritmy izogeometricheskoi approksimatsii ratsionalnymi splainami, Preprint No 9-90, In-t teor. i prikl. mekhan. SO AN SSSR, Novosibirsk, 1990
[12] Kvasov B. I., Vanin L. A., “Rational $B$-splines and algorithms of isogeometric local approximation”, Russ. J. Numer. Analys. Math. Modelling, 8:6 (1993), 483–506 | DOI | MR | Zbl
[13] Kvasov B. I., Yatsenko S. A., “Izogeometricheskaya interpolyatsiya ratsionalnymi splainami”, Approksimatsiya splainami, Vychisl. sistemy, 121, Novosibirsk, 1987, 11–36 | MR | Zbl
[14] Shokin Yu. I., Intervalnyi analiz, Nauka, Novosibirsk, 1981 | Zbl
[15] Zavyalov Yu. S., “O teorii obobschennykh kubicheskikh splainov”, Priblizhenie splainami, Vychisl. sistemy, 137, Novosibirsk, 1990, 58–90 | MR
[16] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[17] Späth H., Eindimensionale Spline-interpolations-algorithmen, R. Oldenbourg Verlag, München, 1990 | MR
[18] Koch P. E., Lyche T., “Interpolation with exponential $B$-splines in tension”, Comput. Suppl., 8 (1993), 173–190 | MR | Zbl
[19] Pruess S., “Alternatives to the exponential spline in tension”, Math. Comput., 33:148 (1979), 1273–1281 | DOI | MR | Zbl
[20] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl
[21] Gordon W. J., “Spline-blended surface interpolation through curve networks”, J. Math. and Mech., 18:10 (1969), 951–952 | MR
[22] Späth H., “Exponential spline interpolation”, Computing, 4 (1969), 225–233 | DOI | MR
[23] Späth H., Spline-algorithmen zur Konstruktion glatter Kurven und Flächen, R. Oldenbourg Verlag, München, 1986 | MR
[24] Akima H., “A new method of interpolation and smooth curve fitting based on local procedures”, J. Assoc. Comput. Mach., 17 (1970), 589–602 | Zbl
[25] Fritsch F. N., Carlson R. E., “Monotone piecewise cubic interpolation”, SIAM J. Numer. Analys., 17:2 (1980), 238–246 | DOI | MR | Zbl
[26] Kvasov N. I., Yatsenko S. A., “The algorithms of conservative local curve and surface approximation”, Conf. on Curves, Surfaces, CAGD, and Image Processing (Biri, Norway, June 20–25, 1991), 71 | Zbl