Numerical inversion of integral Wiener-Hopf operators with a causative operator kernel in multidimensional inverse problems of unsteady heat conduction
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 11, pp. 44-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_11_a4,
     author = {R. P. Tarasov},
     title = {Numerical inversion of integral {Wiener-Hopf} operators with a causative operator kernel in multidimensional inverse problems of unsteady heat conduction},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {44--72},
     year = {1996},
     volume = {36},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a4/}
}
TY  - JOUR
AU  - R. P. Tarasov
TI  - Numerical inversion of integral Wiener-Hopf operators with a causative operator kernel in multidimensional inverse problems of unsteady heat conduction
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 44
EP  - 72
VL  - 36
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a4/
LA  - ru
ID  - ZVMMF_1996_36_11_a4
ER  - 
%0 Journal Article
%A R. P. Tarasov
%T Numerical inversion of integral Wiener-Hopf operators with a causative operator kernel in multidimensional inverse problems of unsteady heat conduction
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 44-72
%V 36
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a4/
%G ru
%F ZVMMF_1996_36_11_a4
R. P. Tarasov. Numerical inversion of integral Wiener-Hopf operators with a causative operator kernel in multidimensional inverse problems of unsteady heat conduction. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 11, pp. 44-72. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a4/

[1] Bek Dzh., Blakuell B., Sent-Kler Ch., Nekorrektnye obratnye zadachi teploprovodnosti, Mir, M., 1989

[2] Alifanov O. M., Obratnye zadachi teploobmena, Mashinostroenie, M., 1988

[3] Tarasov R. P., “Chislennoe obraschenie prichinnykh operatorov Vinera-Khopfa i metod tsifrovykh filtrov v obratnykh zadachakh teploprovodnosti”, Zh. vychisl. matem. i matem. fiz., 33:11 (1993), 1603–1625 | MR | Zbl

[4] S. G. Krein (red.), Funktsionalnyi analiz, Seriya SBM, Nauka, M., 1972 | MR | Zbl

[5] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[7] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, Izd-vo inostr. lit., M., 1962 | MR

[8] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR

[9] Tarasov R. P., “Vychislenie funktsii v algebre formalnykh polinomov i algoritmy tsifrovoi obrabotki mnogomernykh signalov”, Zh. vychisl. matem. i matem. fiz., 32:10 (1992), 1523–1544 | MR | Zbl

[10] Tarasov R. P., “Tsifrovoi spektralnyi analiz v algebre formalnykh polinomov i ego prilozhenie”, Zh. vychisl. matem. i matem. fiz., 36:2 (1996), 18–41 | MR | Zbl

[11] Birman M. Sh., “K teorii samosopryazhennykh rasshirenii polozhitelno opredelennykh operatorov”, Matem. sb., 38(80) (1956), 431–450 | MR | Zbl

[12] Vishik M. I., “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Tr. Matem. ob-va, 1, M., 1952, 187–246

[13] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[14] Balakrishnan A., Vvedenie v teoriyu optimizatsii v gilbertovom prostranstve, Mir, M., 1974 | MR | Zbl

[15] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[16] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, Izd-vo inostr. lit., M., 1963

[17] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966

[18] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR