Approximation by local two-dimensional splines of smoothness $C$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 11, pp. 35-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_11_a3,
     author = {N. L. Zmatrakov},
     title = {Approximation by local two-dimensional splines of smoothness $C$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {35--43},
     year = {1996},
     volume = {36},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a3/}
}
TY  - JOUR
AU  - N. L. Zmatrakov
TI  - Approximation by local two-dimensional splines of smoothness $C$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 35
EP  - 43
VL  - 36
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a3/
LA  - ru
ID  - ZVMMF_1996_36_11_a3
ER  - 
%0 Journal Article
%A N. L. Zmatrakov
%T Approximation by local two-dimensional splines of smoothness $C$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 35-43
%V 36
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a3/
%G ru
%F ZVMMF_1996_36_11_a3
N. L. Zmatrakov. Approximation by local two-dimensional splines of smoothness $C$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 11, pp. 35-43. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a3/

[1] Ženiček A., “Interpolation polynomials on the triangle”, Numer. Math., 15 (1970), 283–296 | DOI | MR

[2] Ženiček A., “Polynomial approximation on tetrahedrons in the finite element method”, J. Approx. Theory, 7 (1973), 334–351 | DOI | MR

[3] de Boor C., Höllig K., “Approximation power of smooth bivariate $pp$ functions”, Math. Z., 197 (1988), 343–363 | DOI | MR | Zbl

[4] de Boor C., Höllig K., “Approximation order from bivariate $C^{-1}$-cubic: a counterexample”, Proc. Amer. Math. Soc., 87 (1983), 649–655 | DOI | MR | Zbl

[5] Jia R.-Q., On the controlled approximation order from certain spaces of smooth bivariate splines, Rept. No 2696, Math. Res. Center Techn. Summary, 1984

[6] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[7] Powell M. J. D., Sabin M. A., “Piecewise quadratic approximations on triangles”, ACM Trans. Math. Software, 3 (1977), 316–325 | DOI | MR | Zbl

[8] Heindl G., “Interpolation and approximation by piecwise quadratic $C^1$-functions of two variables”, Multivariate Approx. Theory, Birkhäuser, Basel, 1979, 146–161 | MR

[9] Chui C. K., He T. X., “Bivariate $C^1$ quadratic finite elements and vertex splines”, Math. Comput., 54:189 (1990), 169–194 | MR

[10] Chui C. K., He T. X., Wang R. H., “The $C^2$ quartic spline space on a four-directional mesh”, Approx. Theory and its Applic., 3:4 (1987), 32–36 | MR | Zbl

[11] Shumilov B. M., “O lokalnoi interpolyatsii na ravnomernoi treugolnoi setke splainami chetvertoi stepeni gladkosti $C^1$”, Izv. vuzov. Matematika, 1988, no. 5, 71–81 | MR

[12] Zmatrakov H. L., “Approksimativnye svoistva dvumernykh splainov tretei i chetvertoi stepenei”, Zh. vychisl. matem. i matem. fiz., 33:1 (1993), 12–21 | MR | Zbl

[13] de Boor C., de Vore R., “Approximation by smooth multivariate splines”, Trans. Amer. Math. Soc., 276:2 (1983), 775–788 | DOI | MR | Zbl

[14] Chui C. K., Lai M. J., “On bivariate super vertex splines”, Constructive Approx., 6 (1990), 399–419 | DOI | MR | Zbl

[15] Chui C. K., Lai M. J., “On multivariate vertex splines and finite elements”, J. Approx. Theory, 60:3 (1990), 245–343 | DOI | MR | Zbl

[16] Chui C. K., Wang R. H., “On smooth multivariate spline functions”, Math. Comput., 41:163 (1983), 131–142 | DOI | MR | Zbl