The construction of finitely represented Lie algebras
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 11, pp. 20-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1996_36_11_a2,
     author = {V. P. Gerdt and V. N. Robuk and V. M. Sever'yanov},
     title = {The construction of finitely represented {Lie} algebras},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {20--34},
     year = {1996},
     volume = {36},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a2/}
}
TY  - JOUR
AU  - V. P. Gerdt
AU  - V. N. Robuk
AU  - V. M. Sever'yanov
TI  - The construction of finitely represented Lie algebras
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1996
SP  - 20
EP  - 34
VL  - 36
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a2/
LA  - ru
ID  - ZVMMF_1996_36_11_a2
ER  - 
%0 Journal Article
%A V. P. Gerdt
%A V. N. Robuk
%A V. M. Sever'yanov
%T The construction of finitely represented Lie algebras
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1996
%P 20-34
%V 36
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a2/
%G ru
%F ZVMMF_1996_36_11_a2
V. P. Gerdt; V. N. Robuk; V. M. Sever'yanov. The construction of finitely represented Lie algebras. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 11, pp. 20-34. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_11_a2/

[1] Ufnarovskii V. A., “Kombinatornye i asimptoticheskie metody v algebre”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundamentalnye napravleniya, 57, VINITI, M., 1990, 5–177 | MR

[2] Bokut' L. A., Kukin G. P., Algorithmic and combinatorial algebra, Kluwer Acad. Publs., Dordrecht, 1994 | MR | Zbl

[3] Mikhalev A. A., Zolotykh A. A., Combinatorial aspects of Lie superalgebras, CRC Press, New York–Boca Raton, 1995 | MR | Zbl

[4] Shirshov A. I., “Nekotorye algoritmicheskie problemy dlya algebr Li”, Sibirskii matem. zh., 3:2 (1962), 292–296 | Zbl

[5] Bokut L. A., “Vlozheniya v prostye assotsiativnye algebry”, Algebra i logika, 15 (1976), 117–142 | MR | Zbl

[6] Bergman G., “The diamond lemma for ring theory”, Advances Math., 29 (1978), 178–218 | DOI | MR

[7] Buchberger B., An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal, Ph. D. Thesis, Math. Inst., Univ. of Insbruck, Austria, 1965 (German); Aequations Math., 4 (1970), 374–383 | DOI | MR | Zbl

[8] Buchberger B., “Gröbner bases: an algorithmic method in polynomial ideal theory”, Recent Trends in Multidimensional System Theory, 1985, 184–232 | Zbl

[9] Buchberger B., Loos R., “Algebraic simplification. Computer algebra”, Symbolic and Algebraic Comput., 1982, 11–44 | MR

[10] Bokut L. A., Kukin G. P., “Nerazreshimye algoritmicheskie problemy dlya polugrupp, grupp i kolets”, Itogi nauki i tekhn. Algebra, topologiya, geometriya, 25, VINITI, M., 1987, 3–66 | MR

[11] Bokut L. A., Lvov I. V., Kharchenko V. K., “Nekommutativnye koltsa”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundamentalnye napravleniya, 18, VINITI, M., 1988, 5–116 | MR

[12] Mora T., Groebner bases in non-commutative algebras, Preprint, Univ. of Genova, 1988 | MR

[13] Kandri-Rody A., Weispfenning V., “Non-commutative Gröbner bases in algebras of solvable type”, J. Symbolic Comput., 9 (1990), 1–26 | DOI | MR | Zbl

[14] Apel J., Lassner W., “An extension of buchberger's algorithm and calculations in enveloping fields of Lie algebras”, J. Symbolic. Comput., 6 (1988), 361–370 | DOI | MR | Zbl

[15] Wahlquist H. D., Estabrook F. B., “Prolongation structures of nonlinear evolution equations. I; II”, J. Math. Phys., 16 (1975), 1–7 ; 18 (1976), 1293–1297 | DOI | MR | Zbl | MR

[16] Graegert P. K. H., “Lie algebra computations”, Acta Appl. Math., 16 (1989), 231–242 | DOI | MR

[17] Roelofs G. H. M., The LIESUPER package for REDUCE, Mem. 943, Univ. Twente, Netherlands, 1991

[18] Akselrod I. R., Gerdt V. P., Kovtun V. E., Robuk V. N., Construction of a Lie algebra by a subset of generators and commutation relations, Preprint E5-90-508, JINR, Dubna, 1990 ; Comput. Algebra in Phys. Res., World Scient. Publ. Co., Singapore, 1991, 306–312 | MR

[19] Hearn A. C., REDUCE User's Manual. Version 3.5, RAND Publ. CP78. Authorized Reprint, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, 1993 (Rev. 10/93)

[20] Bahturin J. A., Lectures on Lie algebras, Acad. Verl., Berlin, 1978 | MR

[21] Robuk V. N., “O klassifikatsii evolyutsionnykh uravnenii vtorogo poryadka”, Operatornye prostranstva i funktsionalnyi analiz, Nauk. dumka, Kiev, 1987, 58–66 | MR

[22] Reutenauer C., Free Lie algebras, Clarendon Press, Oxford, 1993 | MR | Zbl

[23] Hall M., The theory of groups, Macmillan Cp., New York, 1959 | MR | Zbl

[24] Gerdt V. P., Kovtun V. E., Robuk V. N., “Genetic codes of Lie algebras and nonlinear evolution equations”, Nonlinear Evolution Equations and Dynamical Systems, Springer, Berlin, 1991, 124–126

[25] Litvak A. G., Freiman G. M., “Vzaimodeistvie silnykh elektromagnitnykh voln s plotnoi plazmoi”, Nelineinye volny. Rasprostranenie i vzaimodeistvie, Nauka, M., 1981, 61–87

[26] Zharkov A. Yu., Blinkov Yu. A., “Involutive approach tb solving systems of algebraic equations”, Proc. IMACS Symposium on Symbolic Comput., LIFL, Lille, 1993, 11–16