@article{ZVMMF_1996_36_10_a7,
author = {A. L. Gladkov},
title = {Unbounded solutions of the nonlinear heat-conduction equation with strong convection at infinity},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {73--86},
year = {1996},
volume = {36},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_10_a7/}
}
TY - JOUR AU - A. L. Gladkov TI - Unbounded solutions of the nonlinear heat-conduction equation with strong convection at infinity JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1996 SP - 73 EP - 86 VL - 36 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_10_a7/ LA - ru ID - ZVMMF_1996_36_10_a7 ER -
%0 Journal Article %A A. L. Gladkov %T Unbounded solutions of the nonlinear heat-conduction equation with strong convection at infinity %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1996 %P 73-86 %V 36 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_10_a7/ %G ru %F ZVMMF_1996_36_10_a7
A. L. Gladkov. Unbounded solutions of the nonlinear heat-conduction equation with strong convection at infinity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 10, pp. 73-86. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_10_a7/
[1] Kalashnikov A. S., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, Uspekhi matem. nauk, 42:2 (1987), 135–176 | MR | Zbl
[2] Diaz J. I., Kersner R., “On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium”, J. Different. Equat., 69:3 (1987), 368–403 | DOI | MR | Zbl
[3] Gilding B. H., “Improved theory for a nonlinear degenerate parabolic equation”, Ann. Scuola norm. super. Pisa. Ser. 4, 16:2 (1989), 165–224 | MR | Zbl
[4] Kalashnikov A. S., “O kharaktere rasprostraneniya vozmuschenii v protsessakh, opisyvaemykh kvazilineinymi vyrozhdayuschimisya parabolicheskimi uravneniyami”, Tr. sem. im. I. G. Petrovskogo, 1, M., 1975, 135–144 | Zbl
[5] Alvarez L., Diaz J. I., Kersner R., “On the initial growth of the interfaces in nonlinear diffusion-convection processes”, Nonlinear Diffusion Equat. and their Equilibrium States, 1 (1988), 1–20 | MR | Zbl
[6] Shmarev S. I., “Mgnovennoe vozniknovenie osobennostei u resheniya vyrozhdayuschegosya parabolicheskogo uravneniya”, Sibirskii matem. zh., 31:4 (1990), 166–179 | MR | Zbl
[7] Gilding B. H., Kersner R., “Diffusion-convection-reaction, frontieres libres et une equation integrale”, C.r. Acad. sci. Ser. 1, 313 (1991), 743–746 | MR | Zbl
[8] Andreucci D., Degenerate parabolic equations with initial data measures, Prepr. Univ. Studi di Roma, La Sapienza, 1994
[9] Herrero M. A., Pierre M., “The Cauchy problem for $u_t=\Delta u^m$ when $0 m 1$”, Trans. Amer. Math. Soc., 291:1 (1985), 145–158 | MR | Zbl
[10] Gladkov A. L., “Zadacha Koshi dlya nekotorykh vyrozhdayuschikhsya kvazilineinykh parabolicheskikh uravnenii s pogloscheniem”, Sibirskii matem. zh., 34:1 (1993), 47–64 | MR
[11] Bokalo N. M., “Ob odnoznachnoi razreshimosti kraevykh zadach dlya polulineinykh parabolicheskikh uravnenii v neogranichennykh oblastyakh bez uslovii na beskonechnosti”, Sibirskii matem. zh., 34:4 (1993), 33–40 | MR | Zbl
[12] Vazquez J. L., Walias M., “Existence and uniqueness of solutions of diffusion-absorption equations with general data”, Different. and Integral Equat., 7:1 (1994), 15–36 | MR | Zbl
[13] Brezis H., “Semilinear equations in $\mathbb{R}^N$ without condition at infinity”, Appl. Math. and Optimizat., 12 (1984), 271–282 | DOI | MR | Zbl
[14] Kamin S., Peletier L. A., Vazquez J. L., “A nonlinear diffusion-absorption equation with unbounded initial data”, Nonlinear Diffusion Equat. and their Equilibrium States, 3 (1992), 243–263 | DOI | MR
[15] Gladkov A. L., “O razreshimosti zadachi Koshi s proizvolno rastuschei na beskonechnosti nachalnoi funktsiei dlya nekotorykh vyrozhdayuschikhsya kvazilineinykh parabolicheskikh uravnenii”, Differents. ur-niya, 27:2 (1991), 243–250 | MR | Zbl
[16] Kato T., “Schrodinger operators with singular potentials”, Israil. J. Math., 13:1 (1972), 135–148 | DOI | MR