@article{ZVMMF_1996_36_10_a4,
author = {N. A. Meller and B. V. Pal'tsev and I. I. Chechel'},
title = {A rapidly convergent iterative domain-decomposition method for boundary-value problems for a second-order elliptic equation with a parameter},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {26--45},
year = {1996},
volume = {36},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_10_a4/}
}
TY - JOUR AU - N. A. Meller AU - B. V. Pal'tsev AU - I. I. Chechel' TI - A rapidly convergent iterative domain-decomposition method for boundary-value problems for a second-order elliptic equation with a parameter JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1996 SP - 26 EP - 45 VL - 36 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_10_a4/ LA - ru ID - ZVMMF_1996_36_10_a4 ER -
%0 Journal Article %A N. A. Meller %A B. V. Pal'tsev %A I. I. Chechel' %T A rapidly convergent iterative domain-decomposition method for boundary-value problems for a second-order elliptic equation with a parameter %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1996 %P 26-45 %V 36 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_10_a4/ %G ru %F ZVMMF_1996_36_10_a4
N. A. Meller; B. V. Pal'tsev; I. I. Chechel'. A rapidly convergent iterative domain-decomposition method for boundary-value problems for a second-order elliptic equation with a parameter. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 36 (1996) no. 10, pp. 26-45. http://geodesic.mathdoc.fr/item/ZVMMF_1996_36_10_a4/
[1] Mateeva E. I., Paltsev B. V., “O razdelenii oblastei pri reshenii kraevykh zadach dlya uravneniya Puassona v oblastyakh slozhnoi formy”, Zh. vychisl. matem. i matem. fiz., 13:6 (1973), 1441–1458 | MR | Zbl
[2] Katsnelson V. E., Menshikov V. V., “Ob odnom analoge alterniruyuschego metoda Shvartsa”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 17, Izd-vo KhGU, Kharkov, 1973, 206–215
[3] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh prilozheniya v analize, Otdel vychisl. matem. AN SSSR, M., 1983 | MR
[4] Lebedev V. I., Agoshkov V. I., Variatsionnye algoritmy metoda razdeleniya oblasti, Preprint No 54, OM AN SSSR, M., 1983
[5] Agoshkov V. I., Lebedev V. I., “Operatory Puankare–Steklova i metody razdeleniya oblasti v variatsionnykh zadachakh”, Vychisl. protsessy i sistemy, 2, Nauka, M., 1985, 173–226 | MR
[6] Agoshkov V. I., “Metody razdeleniya oblasti v zadachakh matematicheskoi fiziki”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 3–52 | Zbl
[7] Furano D., Quateroni A., Zanolli P., “An iterative procedure with interface relaxation for domain decomposition methods”, SIAM J. Numer. Analys., 25:6 (1988), 1213–1236 | DOI | MR
[8] Marini L. D., Quarteroni A., “A relaxation procedure for domain decomposition methods using finite elements”, Numer. Math., 55:5 (1989), 575–598 | DOI | MR | Zbl
[9] Fourth international symposium on domain decomposition method for partial differential equations (M., 1990), SIAM, Philiadelphia, 1991
[10] Paltsev B. V., “O smeshannoi zadache s neodnorodnymi granichnymi usloviyami dlya ellipticheskikh s parametrom uravnenii vtorogo poryadka v lipshitsevykh oblastyakh”, Matem. sb., 197:4 (1996), 59–116 | MR