A numerical method for solving the Dirichlet problem with nonlocal boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 9, pp. 1356-1373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1995_35_9_a3,
     author = {R. Z. Dautov and N. N. Sarimov},
     title = {A numerical method for solving the {Dirichlet} problem with nonlocal boundary conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1356--1373},
     year = {1995},
     volume = {35},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a3/}
}
TY  - JOUR
AU  - R. Z. Dautov
AU  - N. N. Sarimov
TI  - A numerical method for solving the Dirichlet problem with nonlocal boundary conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1995
SP  - 1356
EP  - 1373
VL  - 35
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a3/
LA  - ru
ID  - ZVMMF_1995_35_9_a3
ER  - 
%0 Journal Article
%A R. Z. Dautov
%A N. N. Sarimov
%T A numerical method for solving the Dirichlet problem with nonlocal boundary conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1995
%P 1356-1373
%V 35
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a3/
%G ru
%F ZVMMF_1995_35_9_a3
R. Z. Dautov; N. N. Sarimov. A numerical method for solving the Dirichlet problem with nonlocal boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 9, pp. 1356-1373. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a3/

[1] Karchevskii M. M., Sarimov N. N., “Metod fiktivnykh oblastei dlya odnoi zadachi teorii smazki podshipnikov skolzheniya”, Setochnye metody resheniya zadach matem. fiz., Izd-vo KGU, Kazan, 1984, 75–80 | MR

[2] Sarimov N. N., Foss S. L., Karchevskii M. M., Palladii A. V., “Opredelenie kharakteristik gidrostaticheskogo podshipnika-uplotneniya”, Issl. opor i uplotnenii dvigatelei letatelnykh apparatov, KhAI, Kharkov, 1986, 138–145

[3] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR

[4] Sedov L. I., Mekhanika sploshnoi sredy, v. 2, Nauka, M., 1976 | Zbl

[5] Rukhovets L. A., “Metod fiktivnykh oblastei v zadachakh ob ustanovivshikhsya vetrovykh techeniyakh”, Chisl. metody mekhan. sploshnoi sredy, 12, no. 2, ITPM SO AN SSSR, Novosibirsk, 1981, 98–116 | MR

[6] Vabischevich P. N., “Priblizhennoe reshenie vidoizmenennoi zadachi Dirikhle”, Zh. vychisl. matem. i matem. fiz., 31:11 (1991), 1655–1670 | MR

[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[8] Gaevskii X., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[10] Uraltseva N. N., “O regulyarnosti reshenii variatsionnykh neravenstv”, Uspekhi matem. nauk, 42:6(258) (1987), 151–174 | MR

[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[12] Necas J., Les méthodes directes en theorie des équations elliptiques, Academia, Prague, 1967 | MR

[13] Ilin V. P., “Nekotorye neravenstva v funktsionalnykh prostranstvakh i ikh primenenie k issledovaniyu skhodimosti variatsionnykh metodov”, Tr. MIAN SSSR, 53, M., 1959, 64–127