@article{ZVMMF_1995_35_9_a3,
author = {R. Z. Dautov and N. N. Sarimov},
title = {A numerical method for solving the {Dirichlet} problem with nonlocal boundary conditions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1356--1373},
year = {1995},
volume = {35},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a3/}
}
TY - JOUR AU - R. Z. Dautov AU - N. N. Sarimov TI - A numerical method for solving the Dirichlet problem with nonlocal boundary conditions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1995 SP - 1356 EP - 1373 VL - 35 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a3/ LA - ru ID - ZVMMF_1995_35_9_a3 ER -
%0 Journal Article %A R. Z. Dautov %A N. N. Sarimov %T A numerical method for solving the Dirichlet problem with nonlocal boundary conditions %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1995 %P 1356-1373 %V 35 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a3/ %G ru %F ZVMMF_1995_35_9_a3
R. Z. Dautov; N. N. Sarimov. A numerical method for solving the Dirichlet problem with nonlocal boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 9, pp. 1356-1373. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a3/
[1] Karchevskii M. M., Sarimov N. N., “Metod fiktivnykh oblastei dlya odnoi zadachi teorii smazki podshipnikov skolzheniya”, Setochnye metody resheniya zadach matem. fiz., Izd-vo KGU, Kazan, 1984, 75–80 | MR
[2] Sarimov N. N., Foss S. L., Karchevskii M. M., Palladii A. V., “Opredelenie kharakteristik gidrostaticheskogo podshipnika-uplotneniya”, Issl. opor i uplotnenii dvigatelei letatelnykh apparatov, KhAI, Kharkov, 1986, 138–145
[3] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR
[4] Sedov L. I., Mekhanika sploshnoi sredy, v. 2, Nauka, M., 1976 | Zbl
[5] Rukhovets L. A., “Metod fiktivnykh oblastei v zadachakh ob ustanovivshikhsya vetrovykh techeniyakh”, Chisl. metody mekhan. sploshnoi sredy, 12, no. 2, ITPM SO AN SSSR, Novosibirsk, 1981, 98–116 | MR
[6] Vabischevich P. N., “Priblizhennoe reshenie vidoizmenennoi zadachi Dirikhle”, Zh. vychisl. matem. i matem. fiz., 31:11 (1991), 1655–1670 | MR
[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl
[8] Gaevskii X., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR
[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[10] Uraltseva N. N., “O regulyarnosti reshenii variatsionnykh neravenstv”, Uspekhi matem. nauk, 42:6(258) (1987), 151–174 | MR
[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[12] Necas J., Les méthodes directes en theorie des équations elliptiques, Academia, Prague, 1967 | MR
[13] Ilin V. P., “Nekotorye neravenstva v funktsionalnykh prostranstvakh i ikh primenenie k issledovaniyu skhodimosti variatsionnykh metodov”, Tr. MIAN SSSR, 53, M., 1959, 64–127