Application of the theory of analytic functions in the numerical modeling of nonstationary surface waves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 9, pp. 1448-1456
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1995_35_9_a11,
     author = {V. R. Kogan and V. V. Kuznetsov},
     title = {Application of the theory of analytic functions in the numerical modeling of nonstationary surface waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1448--1456},
     year = {1995},
     volume = {35},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a11/}
}
TY  - JOUR
AU  - V. R. Kogan
AU  - V. V. Kuznetsov
TI  - Application of the theory of analytic functions in the numerical modeling of nonstationary surface waves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1995
SP  - 1448
EP  - 1456
VL  - 35
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a11/
LA  - ru
ID  - ZVMMF_1995_35_9_a11
ER  - 
%0 Journal Article
%A V. R. Kogan
%A V. V. Kuznetsov
%T Application of the theory of analytic functions in the numerical modeling of nonstationary surface waves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1995
%P 1448-1456
%V 35
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a11/
%G ru
%F ZVMMF_1995_35_9_a11
V. R. Kogan; V. V. Kuznetsov. Application of the theory of analytic functions in the numerical modeling of nonstationary surface waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 9, pp. 1448-1456. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_9_a11/

[1] Kogan V. R., Kuznetsov V. V., “Metod chislennogo modelirovaniya nestatsionarnykh gravitatsionno-kapillyarnykh voln konechnoi amplitudy”, Zh. vychisl. matem. i matem. fiz., 29:6 (1989), 844–852 | MR | Zbl

[2] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1965 | MR

[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[4] Longuet-Higgins M. S., Cokelet E. D., “The deformation of steep surface waves on water”, Proc. Roy. Soc. A, 350 (1976), 1–26 | DOI | MR | Zbl

[5] Sretenskii L. H., Teoriya volnovykh dvizhenii zhidkosti, Nauka, M., 1977

[6] Babenko K. I., “Neskolko zamechanii k teorii poverkhnostnykh voln konechnoi amplitudy”, Dokl. AN SSSR, 294:5 (1987), 1033–1037 | MR | Zbl

[7] Poitevin J., Kharif C., “Subharmonic transition of a nonlinear short gravity wave train on deep water”, Proc. Nonlinear Water Waves Workshop (Bristol, 1991), 54–57

[8] Ruvinsky K. D., Feldstein F. I., Freidman G. I., “Numerical simulations of the quasi-stationary stage of ripple excitation by steep gravity-capillary waves”, J. Fluid Mech., 230 (1991), 339–353 | DOI | Zbl

[9] Leonard A., “Vortex methods for flow simulation”, J. Comput. Phys., 37:3 (1980), 289–335 | DOI | MR | Zbl

[10] Brailovskaya V. A., Kogan V. P., “Metod rascheta periodicheskikh vikhrevykh techenii neszhimaemoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 28:6 (1988), 1226–1233 | MR