Investigation of a linear convolution of criteria in multicriterial discrete programming
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 8, pp. 1260-1270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1995_35_8_a8,
     author = {I. I. Melamed and I. Kh. Sigal},
     title = {Investigation of a linear convolution of criteria in multicriterial discrete programming},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1260--1270},
     year = {1995},
     volume = {35},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a8/}
}
TY  - JOUR
AU  - I. I. Melamed
AU  - I. Kh. Sigal
TI  - Investigation of a linear convolution of criteria in multicriterial discrete programming
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1995
SP  - 1260
EP  - 1270
VL  - 35
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a8/
LA  - ru
ID  - ZVMMF_1995_35_8_a8
ER  - 
%0 Journal Article
%A I. I. Melamed
%A I. Kh. Sigal
%T Investigation of a linear convolution of criteria in multicriterial discrete programming
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1995
%P 1260-1270
%V 35
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a8/
%G ru
%F ZVMMF_1995_35_8_a8
I. I. Melamed; I. Kh. Sigal. Investigation of a linear convolution of criteria in multicriterial discrete programming. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 8, pp. 1260-1270. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a8/

[1] Koopmans T. C., “Analysis of production as an efficient combination of activities”, Activity Analysis Production and Allocation, eds. T. C. Koopmans, Wiley, N.Y., 1951, 33–97 | MR

[2] Charnes A., Cooper W. W., Managment Models and Industrial Application of Linear Pragramming, Wiley, N.Y., 1961

[3] Emelichev V. A., Perepilitsa V. A., “K vychislitelnoi slozhnosti diskretnykh mnogokriterialnykh zadach”, Izv. AN SSSR. Tekhn. kibernetika, 1988, no. 1, 78–85 | Zbl

[4] Burkard R. E., Keiding H., Krarup J., Pruzan P. H., “A relationship between optimality and efficiency in multicriteria 0–1 programming problems”, Comput. and Operat. Res., 8:2 (1981), 241–247 | DOI | MR

[5] Melamed I. I., Metody optimizatsii v transportnom protsesse, Itogi nauki i tekhn. Ser. Organizatsiya upravleniya transportom, 10, VINITI, M., 1991

[6] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982 | MR

[7] Gurvits L., “Programmirovanie v lineinykh topologicheskikh prostranstvakh”, V kn.: Errou K. Dzh., Gurvits L., Udzava X., Issledovanie po lineinomu i nelineinomu programmirovaniyu, Izd-vo inostr. lit., M., 1962, 65–155

[8] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964 | Zbl

[9] Melamed I. I., “Multicriteria combinatorial optimization. Theory and Algorithms”, ECC04 VI, Brussels. 1993, 72

[10] Gribov A. B., “Rekursivnoe reshenie transportnykh zadach lineinogo programmirovaniya”, Vest. LGU, 1978, no. 4(19), 11–19 | Zbl

[11] Kristofides N., Teoriya grafov. Algoritmicheskii podkhod, Mir, M., 1978 | MR