@article{ZVMMF_1995_35_8_a5,
author = {N. B. Konyukhova and T. E. Fot},
title = {Numerical investigations of free electrical axisymmetric oscillations of an ideally conducting oblate spheroid},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1209--1232},
year = {1995},
volume = {35},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a5/}
}
TY - JOUR AU - N. B. Konyukhova AU - T. E. Fot TI - Numerical investigations of free electrical axisymmetric oscillations of an ideally conducting oblate spheroid JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1995 SP - 1209 EP - 1232 VL - 35 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a5/ LA - ru ID - ZVMMF_1995_35_8_a5 ER -
%0 Journal Article %A N. B. Konyukhova %A T. E. Fot %T Numerical investigations of free electrical axisymmetric oscillations of an ideally conducting oblate spheroid %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1995 %P 1209-1232 %V 35 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a5/ %G ru %F ZVMMF_1995_35_8_a5
N. B. Konyukhova; T. E. Fot. Numerical investigations of free electrical axisymmetric oscillations of an ideally conducting oblate spheroid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 8, pp. 1209-1232. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a5/
[1] Vainshtein L. A., Elektromagnitnye volny, Nauka, M., 1988
[2] Vainshtein L. A., Otkrytye rezonatory i otkrytye volnovody, Sov. radio, M., 1966
[3] Page L., Adams N. I., Electrodynamics, Vara Nostrand Co., Inc., New York, 1945
[4] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR
[5] Abramov A. A., Vainshtein L. A., Dyshko A. L., Konyukhova N. B., “Chislennye issledovaniya svobodnykh elektricheskikh osesimmetrichnykh kolebanii idealno provodyaschego vytyanutogo sferoida”, Zh. vychisl. matem. i matem. fiz., 29:4 (1989), 535–553 | MR
[6] Komarov I. V., Ponomarev L. I., Slavyanov S. Yu., Sferoidalnye i kulonovskie sferoidalnye funktsii, Nauka, M., 1976 | MR | Zbl
[7] Belkina M. G., “Difraktsiya elektromagnitnykh voln na diske”, Difraktsiya elektromagn. voln na nekotorykh telakh vrascheniya, Sov. radio, M., 1957, 148–174
[8] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968
[9] Grigoreva N. S., “Asimptoticheskie predstavleniya modifitsirovannykh volnovykh funktsii szhatogo sferoida”, Zh. vychisl. matem. i matem. fiz., 19:1 (1979), 156–164 | MR
[10] Grigoreva N. S., “Asimptotika kvazisobstvennykh znachenii operatora Laplasa v sluchae vneshnosti kruglogo diska”, Zh. vychisl. matem. i matem. fiz., 19:5 (1979), 1217–1227 | MR
[11] Fedoryuk M. V., Asimptoticheskie metody dlya obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl
[12] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1974
[13] Birger E. S., Konyukhova N. B., “Chislennyi raschet rasprostraneniya radiovoln v vertikalno-neodnorodnoi troposfere”, Radiotekhn. i elektronika, 14:7 (1969), 1147–1156
[14] Abramov A. A., Ditkin V. V., Konyukhova N. B. i dr., “Vychislenie sobstvennykh znachenii i sobstvennykh funktsii obyknovennykh differentsialnykh uravnenii s osobennostyami”, Zh. vychisl. matem. i matem. fiz., 20:5 (1980), 1155–1173 | MR | Zbl
[15] Abramov A. A., Dyshko A. L., Konyukhova N. B. i dr., “Vychislenie vytyanutykh sferoidalnykh funktsii resheniem sootvetstvuyuschikh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 24:1 (1984), 3–18 | MR | Zbl
[16] Abramov A. A., Dyshko A. L., Konyukhova N. B., “Vychislenie radialnykh volnovykh funktsii dlya sferoidov i trekhosnykh ellipsoidov modifitsirovannym metodom fazovykh funktsii”, Zh. vychisl. matem. i matem. fiz., 31:2 (1991), 212–234 | MR | Zbl
[17] Dyshko A. L., Konyukhova N. B., “Chislennye issledovaniya, vynuzhdennykh elektricheskikh osesimmetrichnykh kolebanii idealno provodyaschego vytyanutogo sferoida”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 753–771 | MR | Zbl