Approximation of the Pareto-hull of a convex set by polyhedral sets
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 8, pp. 1285-1294
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1995_35_8_a11,
     author = {O. L. Chernykh},
     title = {Approximation of the {Pareto-hull} of a convex set by polyhedral sets},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1285--1294},
     year = {1995},
     volume = {35},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a11/}
}
TY  - JOUR
AU  - O. L. Chernykh
TI  - Approximation of the Pareto-hull of a convex set by polyhedral sets
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1995
SP  - 1285
EP  - 1294
VL  - 35
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a11/
LA  - ru
ID  - ZVMMF_1995_35_8_a11
ER  - 
%0 Journal Article
%A O. L. Chernykh
%T Approximation of the Pareto-hull of a convex set by polyhedral sets
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1995
%P 1285-1294
%V 35
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a11/
%G ru
%F ZVMMF_1995_35_8_a11
O. L. Chernykh. Approximation of the Pareto-hull of a convex set by polyhedral sets. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 8, pp. 1285-1294. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_8_a11/

[1] Podinovskii V. V., Nogin V. P., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982 | MR

[2] Lotov A. V., Vvedenie v ekonomiko-matematicheskoe modelirovanie, Nauka, M., 1984 | MR | Zbl

[3] Gass S., Saaty T., “The computational algorithm for the parametric objective funcuon”, Naval Res. Logistics, 2 (1955), 39 | DOI | MR

[4] Lotov A. V., “O ponyatii obobschennykh mnozhestv dostizhimosti i ikh postroenii dlya lineinykh upravlyaemykh sistem”, Dokl. AN SSSR, 250:5 (1980), 1081–1083 | MR | Zbl

[5] Lotov A. V., “Analiz potentsialnykh vozmozhnostei ekonomicheskikh sistem”, Ekonomika i matem. metody, 17:2 (1981), 377–381 | MR | Zbl

[6] Lotov A. V., “Soglasovanie ekonomicheskikh. modelei s ispolzovaniem mnozhestv dostizhimosti”, Matem. metody analiza vzaimodeistviya otraslevykh i regionalnykh sistem, Nauka, Novosibirsk, 1983, 36–44 | MR

[7] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968 | MR | Zbl

[8] Bushenkov V. A., Lotov A. V., “Metody i algoritmy analiza lineinykh sistem na osnove postroeniya obobschennykh mnozhestv dostizhimosti”, Zh. vychisl. matem. i matem. fiz., 20:5 (1980), 1130–1141 | MR | Zbl

[9] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 982 pp.

[10] Bushenkov V. A., “Odin algoritm postroeniya proektsii mnogogrannykh mnozhestv”, Aerofiz. i prikl. matem., MFTI, M., 1980

[11] Bushenkov V. A., “Iteratsionnyi metod postroeniya ortogonalnykh proektsii vypuklykh mnogogrannykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 25:9 (1985), 1285–1292 | MR | Zbl

[12] Kamenev G. K., Issledovanie iteratsionnykh metodov approksimatsii vypuklykh mnozhestv mnogogrannikami, VTs AN SSSR, M., 1986

[13] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek pri priblizhennykh vychisleniyakh”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1386–1396 | MR | Zbl

[14] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR

[15] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek na osnove triangulyatsii”, Zh. vychisl. matem. i matem. fiz., 31:8 (1991), 1231–1242 | MR

[16] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[17] Bushenkov V. A., Gusev D. V., Kamenev G. K., Lotov A. V., “Vizualizatsiya mnozhestva Pareto v mnogomernoi zadache vybora”, Dokl. RAN, 335:5 (1994), 567–569 | Zbl