Approximate solutions of boundary value problems for systems of ordinary differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 7, pp. 1050-1057 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1995_35_7_a3,
     author = {T. Jankowski},
     title = {Approximate solutions of boundary value problems for systems of ordinary differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1050--1057},
     year = {1995},
     volume = {35},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_7_a3/}
}
TY  - JOUR
AU  - T. Jankowski
TI  - Approximate solutions of boundary value problems for systems of ordinary differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1995
SP  - 1050
EP  - 1057
VL  - 35
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_7_a3/
LA  - en
ID  - ZVMMF_1995_35_7_a3
ER  - 
%0 Journal Article
%A T. Jankowski
%T Approximate solutions of boundary value problems for systems of ordinary differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1995
%P 1050-1057
%V 35
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_7_a3/
%G en
%F ZVMMF_1995_35_7_a3
T. Jankowski. Approximate solutions of boundary value problems for systems of ordinary differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 7, pp. 1050-1057. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_7_a3/

[1] Ascher U. M., Mattheij R. M. M., Russell R. D., Numerical solution of boundary value problems for ordinary differential equations, Prentice-Hall, Englewood Cliffs, 1988 | MR | Zbl

[2] Keller H. B., “Accurate difference methods for nonlinear two-point boundary value problems”, SIAM J. Numer. Analys., 11 (1974), 305–320 | DOI | MR | Zbl

[3] 1973 | MR

[4] Keller H. B., “Numerical solution of two-point boundary value problems”, Soc. Industr. and Appl. Math., 24 (1976), 1–61 | MR

[5] Stoer J., Bulirsch R., Introduction to numerical analysis, Springer, New York, 1993 | MR

[6] Bellman R. E., Kalaba R. E., Quasilinearization and nonlinear boundary-value problems, American Elsevier Publishing Co. Inc., New York, 1965 | MR

[7] Jerome J. W., Varga R. S., “Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems”, Theory and Applications of Spline Functions, Academic Press, New York, 1969 | MR

[8] Tewarson R. P., “On the use of splines for the numerical solution of nonlinear two-point boundary value problems”, BIT, 20 (1980), 223–232 | DOI | MR | Zbl