@article{ZVMMF_1995_35_6_a0,
author = {M. K. Kerimov},
title = {In memory of {Anatoli\u{i}} {Alekseyevich} {Dorodnitsyn}},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {819--842},
year = {1995},
volume = {35},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_6_a0/}
}
M. K. Kerimov. In memory of Anatoliĭ Alekseyevich Dorodnitsyn. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 6, pp. 819-842. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_6_a0/
[1] Chushkin P. I., “Akademik Anatolii Alekseevich Dorodnitsyn. K vosmidesyatiletiyu so dnya rozhdeniya”, Akademik Anatolii Alekseevich Dorodnitsyn, VTs AN SSSR, M., 1990, 3–23
[2] Paltsev B. V., “Skhodimost razlozhenii po malomu parametru, vvodimomu v granichnye usloviya, reshenii kraevoi zadachi dlya uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 10:2 (1970), 383–400
[3] Paltsev B. V., “O skhodimosti metoda posledovatelnykh priblizhenii s rasschepleniem granichnykh uslovii pri reshenii kraevoi zadachi dlya uravnenii Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 10:3 (1970), 785–788
[4] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, 4-e izd., Nauka, M., 1974 | MR
[5] Stoker Dzh., Nelineinye kolebaniya v mekhanicheskikh i elektricheskikh sistemakh, Izd-vo inostr. lit., M., 1952
[6] Mischenko E. F., Rozov N. X., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR
[7] Urabe M., “Remarks on periodic solutions of van der Pol's equation”, J. Sci. Hiroshima Univ. Ser. A, 24 (1960), 197–199 | MR | Zbl
[8] Urabe M., “Periodic solutions of van der Pol's equation with damping coefficient $\lambda=0\sim10$”, IEEE Trans. Cicruit Theory, 7 (1960), 382–386 | MR
[9] Urabe M., “Numerical study of periodic solutions of the van der Pol equation”, Proc. Internat Symp. Nonlinear Different. Equations and Nonlinear Mech., Acad. Press, New York, 1963, 184–192 | MR
[10] Urabe M., “Chislennoe issledovanie periodicheskikh reshenii uravneniya Van-der-Polya”, Tr. Mezhdunar. simpoziuma po nelineinym kolebaniyam, v. II, Izd-vo AN USSR, Kiev, 1963, 367–376 | MR
[11] Zonneveld J. A., “Periodic solutions of the van der Pol equation”, Proc. Koninkl. Nederl. Akad. Wet. A, 69:5 (1966), 620–622 | MR | Zbl
[12] Krogdahl W. S., “Numerical solutions of the van der Pol equation”, Z. angew. Math. und Phys., 11 (1960), 59–63 | DOI | MR | Zbl
[13] Yanagiwara N., “A periodic solution of van der Pol's equation with a damping coefficient $\lambda=20$”, J. Sci. Hiroshima Univ. Ser. A, 24:2 (1960), 201–217 | MR | Zbl
[14] Urabe M., Yanagiwara H., Shinohara Y., “Periodic solutions of van der Pol's equation with damping coefficient $\lambda=2\sim10$”, J. Sci. Hiroshima Univ. Ser. A, 23:3 (1960), 325–366 | MR | Zbl
[15] Porno P. J., Wax N., “On the periodic solution of the van der Pol equation”, IEEE Trans. on Circuit Theory, 12:1 (1965), 134–136
[16] Ponzo P. J., Wax N., “On certain relaxation oscillations: asymptotic solutions”, J. Soc. Industr. and Appl. Math., 13:3 (1965), 740–766 | DOI | MR | Zbl
[17] Cartwright Mary L., “Van der Pol's equation for relaxation oscillations”, Contributions Theory Nonlinear Oscillations, v. 2, Princeton Univ. Press, Princeton, 1952, 3–18 | MR
[18] Olver F. W. J., “Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders”, J. Res. Nation. Bur. Standards. Sec. B, 63:2 (1959), 131–169 | MR | Zbl
[19] Kerimov M. K., “Nekotorye novye rezultaty po teorii funktsii Vebera”, Tablitsy funktsii Vebera, VTs AN SSSR, M., 1968, 88–116; Kerimov M. K., Certain new results of the theory of Weber functions, Bell Labs Rept No TR 71-86, U.S.A., 1986
[20] Kerimov M. K., “O metodakh vychisleniya dzeta-funktsii Rimana i nekotorykh ee obobschenii”, Zh. vychisl. matem. i matem. fiz., 20:6 (1980), 1580–1597 | MR | Zbl
[21] Eremin A. Yu., Kaporin I. E., Kerimov M. K., “O vychislenii dzeta-funktsii Rimana v kompleksnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 25:4 (1985), 500–511 | MR | Zbl
[22] Eremin A. Yu., Kaporin I. E., Kerimov M. K., “O vychislenii proizvodnykh dzeta-funktsii Rimana v kompleksnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 28:8 (1988), 1135–1148 | MR | Zbl
[23] Smirnov A. D., Tablitsy funktsii Eiri i spetsialnykh vyrozhdennykh gipergeometricheskikh funktsii dlya asimptoticheskikh reshenii differentsialnykh uravnenii vtorogo poryadka, Izd-vo AN SSSR, M., 1955
[24] Belotserkovskii O. M., Pushkin P. I., “Chislennyi metod integralnykh sootnoshenii”, Zh. vychisl. matem. i matem. fiz., 2:5 (1962), 731–759
[25] Debruyne M., “Une approche critique de la méthode des relations integrales: cas des équations de Dorodnitsyn. Problème de la précision”, C. r. Acad. Sci. Paris. Ser. II, 317:9 (1993), 1149–1152 | Zbl
[26] Debruyne M., Merlen A., “Une approche critique de la méthode des relations integrales: cas des équations de Dorodnitsyn. Problème de la convergence”, C. R. Acad. Sci. Paris. Ser. II, 317:10 (1993), 1269–1274 | Zbl
[27] Zharov M. I., Mischenko E. F., Rozov H. X., “O nekotorykh spetsialnykh funktsiyakh i konstantakh, voznikayuschikh v teorii relaksatsionnykh kolebanii”, Dokl. AN SSSR, 261:6 (1981), 1292–1296 | MR | Zbl