@article{ZVMMF_1995_35_5_a5,
author = {Ya. D. Sergeyev},
title = {A one-dimensional deterministic global minimization algorithm},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {705--717},
year = {1995},
volume = {35},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_5_a5/}
}
Ya. D. Sergeyev. A one-dimensional deterministic global minimization algorithm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 5, pp. 705-717. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_5_a5/
[1] Archetti F., Shoen F., “A survey on the global optimization problems: General theory and computational approaches”, Ann. Operat. Res., 1 (1984), 87–110 | DOI | Zbl
[2] Dixon L. C. W., Szegö G. P., Towards global optimization, v. 1, North-Holland, N. Y., 1975 | MR
[3] Dixon L. C. W., Szegö G. P., Towards global optimization, v. 2, North-Holland, N. Y., 1978 | MR | Zbl
[4] Evtushenko Yu. G., “Numerical methods for finding global extrema (case of a non-uniform mesh)”, U. S. S. R. Comput. Math. and Math. Phys., 11:6 (1971), 38–54 | DOI
[5] Floudas C. A., Pardalos P. M., A collection of test problems for constrained global optimization algorithms, Lect. Notes in Comput. Sci., 455, Springer, 1990 | MR | Zbl
[6] C. A. Floudas, P. M. Pardalos (eds.), Recent advances in global optimization, Princeton Univ. Press, Princeton; Springer, 1990 | MR
[7] Galperin E. A., “The cubic algorithm”, J. Math. Analys. and Applic., 112 (1985), 635–640 | DOI | MR | Zbl
[8] Grishagin V. A., “On convergence conditions for one class of global search algorithms”, Proc. All-union Seminar Numer. Methods of Nonlinear Program., Kharkov, 1979, 82–84
[9] Hansen P., Jaumard B., Lu S.-H., “Global optimization of univariate Lipschitz functions. 1: Survey and properties”, Math. Program., 55 (1992), 251–272 | DOI | MR | Zbl
[10] Horst R., Tuy H., Global optimization — deterministic approaches, Springer, Berlin, 1990 | MR
[11] Kushner H., “A new method for locating the maximum point of an arbitrary multipeak curve in presence of noise”, J. Basic Engng., 86:11 (1964), 97–106
[12] Pijavskii S. A., “An algorithm for finding the absolute extremum of a function”, U. S. S. R. Comput. Math. and Math. Phys., 12:4 (1972), 57–67 | DOI | MR
[13] Rinnooy Kan A. H. G., Timmer G. H., “Global optimization”, Optimization, North-Holland, Amsterdam, 1989 | MR | Zbl
[14] Sukharev A. G., Minmax algorithms in problems of numerical analysis, Nauka, M., 1989 | MR | Zbl
[15] Strongin R. G., Numerical methods in multiextremal problems, Nauka, M., 1978 | MR | Zbl
[16] Törn A., Zilinskas A., Global optimization, Lect. Notes in Comput. Sci., 350, Springer, 1989 | MR
[17] Pinter J., “Convergence qualification of adaptive partition algorithms in global optimization”, Math. Program., 56 (1992), 343–360 | DOI | MR | Zbl
[18] Sergeyev Ya. D., Grishagin V. A., “A parallel method for finding the global minimum of univariate functions”, J. Optimizat. Theory and Appl., 80:3 (1994) | MR | Zbl
[19] Sergeyev Ya. D., Strongin R. G., “A global minimization algorithm with parallel iterations”, U. S. S. R. Comput. Math. and Math. Phys., 29:2 (1989), 7–15 | DOI | MR
[20] Hansen P., Jaumard B., Lu S.-H., “Global optimization of univariate Lipschitz functions. 2: New algorithms and computational comparison”, Math. Program., 55 (1992), 273–293 | DOI | MR