@article{ZVMMF_1995_35_5_a14,
author = {V. I. Zorkal'tsev},
title = {The points of a linear manifold nearest the origin of coordinates},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {801--810},
year = {1995},
volume = {35},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_5_a14/}
}
TY - JOUR AU - V. I. Zorkal'tsev TI - The points of a linear manifold nearest the origin of coordinates JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1995 SP - 801 EP - 810 VL - 35 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_5_a14/ LA - ru ID - ZVMMF_1995_35_5_a14 ER -
V. I. Zorkal'tsev. The points of a linear manifold nearest the origin of coordinates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 5, pp. 801-810. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_5_a14/
[1] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[2] Gauss K. F., Izbrannye geofizicheskie sochineniya, Izd-vo geofiz. lit., M., 1957
[3] Dikin I. I., Zorkaltsev V. I., Iterativnoe reshenie zadach matematicheskogo programmirovaniya (algoritmy metoda vnutrennikh tochek), Nauka, Novosibirsk, 1980 | MR | Zbl
[4] Adler I., Rende M. N., Veiga G., An implementation of Karmarkar's algorithm for linear programming, Rept 86-8. Operat. Res. Center, Univ. California, Barkeley, May, 1986
[5] Bernes E. B., Variation on Karmarkar's algorithm for solving linear problems, Rept., IBM Boston Res. Center, May, 1986
[6] Monma C. L., Morton A. J., Computational experience with a dual affine variant of Karmarkar's method for linear programming, Bell Communs. Res., Morristown, New Jersey, 1987
[7] Wei Zi Luan, “An interior point method for linear programming”, J. Comput. Math., 10 (1987), 342–350 | MR
[8] Zorkaltsev V. I., Otnositelno vnutrennyaya tochka optimalnykh reshenii, Komi NTs AN SSSR, Syktyvkar, 1988
[9] Zorkaltsev V. I., Metod naimenshikh kvadratov i ego konkurenty, Sibirskii energetich. in-t SO RAN, Irkutsk, 1993