Radiation conditions for the discrete analogues of the non-stationary Maxwell's equations in the case of an inhomogeneous medium
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 3, pp. 412-426 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1995_35_3_a6,
     author = {A. R. Maǐkov and A. G. Sveshnikov},
     title = {Radiation conditions for the discrete analogues of the non-stationary {Maxwell's} equations in the case of an inhomogeneous medium},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {412--426},
     year = {1995},
     volume = {35},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_3_a6/}
}
TY  - JOUR
AU  - A. R. Maǐkov
AU  - A. G. Sveshnikov
TI  - Radiation conditions for the discrete analogues of the non-stationary Maxwell's equations in the case of an inhomogeneous medium
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1995
SP  - 412
EP  - 426
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_3_a6/
LA  - ru
ID  - ZVMMF_1995_35_3_a6
ER  - 
%0 Journal Article
%A A. R. Maǐkov
%A A. G. Sveshnikov
%T Radiation conditions for the discrete analogues of the non-stationary Maxwell's equations in the case of an inhomogeneous medium
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1995
%P 412-426
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_3_a6/
%G ru
%F ZVMMF_1995_35_3_a6
A. R. Maǐkov; A. G. Sveshnikov. Radiation conditions for the discrete analogues of the non-stationary Maxwell's equations in the case of an inhomogeneous medium. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 3, pp. 412-426. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_3_a6/

[1] Berezin Yu. A., Vshivkov V. A., Metod chastits v dinamike razrezhennoi plazmy, Nauka, Novosibirsk, 1980 | MR

[2] Maikov A. R., Poezd A. D., Sveshnikov A. G., Yakunin S. A., “Raznostnye skhemy nachalno-kraevykh zadach dlya uravnenii Maksvella v neogranichennoi oblasti”, Zh. vychisl. matem. i matem. fiz., 29:2 (1989), 239–250 | MR

[3] Maikov A. R., Sveshnikov A. G., “Konservativnye raznostnye skhemy dlya nestatsionarnykh uravnenii Maksvella v trekhmernom sluchae”, Zh. vychisl. matem. i matem. fiz., 33:9 (1993), 1352–1367 | MR

[4] Maikov A. R., Sveshnikov A. G., Yakunin S. A., “Nelokalnye usloviya izlucheniya dlya nestatsionarnykh uravnenii Maksvella”, Dokl. AN SSSR, 314:6 (1990), 1375–1379 | MR

[5] Maikov A. R., Sveshnikov A. G., Yakunin S. A., “Raznostnye skhemy dlya nestatsionarnykh uravnenii Maksvella v volnovodnykh sistemakh”, Dokl. AN SSSR, 288:3 (1986), 597–601

[6] Poezd A. D., Yakunin S. A., “Diskretnye nestatsionarnye usloviya izlucheniya dlya tsilindricheskikh sistem. Teorema skhodimosti”, Zh. vychisl. matem. i matem. fiz., 30:9 (1990), 1323–1331 | MR

[7] Bykhovskii E. B., “Reshenie smeshannoi zadachi dlya sistemy uravnenii Maksvella v sluchae idealno provodyaschei granitsy”, Vestn. LGU, 1957, no. 13, 250–266

[8] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, Izd-vo inostr. lit., M., 1960 | MR

[9] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR