Numerical analysis of the blow-up regimes of combustion of a two-component nonlinear heat-conducting medium
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 3, pp. 380-399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1995_35_3_a4,
     author = {S. N. Dimova and M. S. Kaschiev and M. G. Koleva and D. P. Vasileva},
     title = {Numerical analysis of the blow-up regimes of combustion of a two-component nonlinear heat-conducting medium},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {380--399},
     year = {1995},
     volume = {35},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_3_a4/}
}
TY  - JOUR
AU  - S. N. Dimova
AU  - M. S. Kaschiev
AU  - M. G. Koleva
AU  - D. P. Vasileva
TI  - Numerical analysis of the blow-up regimes of combustion of a two-component nonlinear heat-conducting medium
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1995
SP  - 380
EP  - 399
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_3_a4/
LA  - en
ID  - ZVMMF_1995_35_3_a4
ER  - 
%0 Journal Article
%A S. N. Dimova
%A M. S. Kaschiev
%A M. G. Koleva
%A D. P. Vasileva
%T Numerical analysis of the blow-up regimes of combustion of a two-component nonlinear heat-conducting medium
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1995
%P 380-399
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_3_a4/
%G en
%F ZVMMF_1995_35_3_a4
S. N. Dimova; M. S. Kaschiev; M. G. Koleva; D. P. Vasileva. Numerical analysis of the blow-up regimes of combustion of a two-component nonlinear heat-conducting medium. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 3, pp. 380-399. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_3_a4/

[1] Nicolis G., Prigogine I., Self-organization in non-equilibrium systems, Wiley, N.Y., 1977 | MR | Zbl

[2] Haken H., Synergetics, Springer, Berlin etc., 1978 | MR

[3] Turing A., “The chemical basis of morphogenesis”, Phylos. Trans. Roy. Soc. London B, 237 (1952), 37–72 | DOI

[4] Svirezhev Yu. M., Nonlinear waves, dissipate structures and catastrophes in the ecology, Nauka, M., 1987 | MR | Zbl

[5] Allessie M. A., Bouke F. I. M., Schapman F. J. G., “Circus movement in rabbit atrial muscle as a mechanism of tachycardia”, Circul. Res., 33 (1973), 54–61

[6] Gorelova N. A., Bures J., “Spiral waves of spreading depression in the isolated chiken retina”, J. Neurobiology, 14 (1983), 353–358 | DOI

[7] Zaikin A. N., Zhabotinskii A. M., “Concentration wave propagation in two-dimensional liquid phase self-oscillating system”, Nature, 225 (1970), 535–537 | DOI

[8] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Regimes with enhancement in problems of quasilinear parabolic equations, Nauka, M., 1987 | MR

[9] Kurkina E. S., Malinetskii G. G., Nonstationary dissipative structures in two-component mediums, Preprint No 19, Keldysh Inst. of Appl. Math., Acad. Sci. USSR, M., 1981

[10] Kurdyumov S. P., Kurkina E. S., Malinetskii G. G., Samarskii A. A., “Nonstationary dissipative structures in nonlinear two-component mediums with volume sources”, Dokl. Akad. Nauk SSSR, 258:5 (1981), 1084–1088

[11] Kurdyumov S. P., Kurkina E. S., Telkovskaja O. V., Analysis of the eigenfunctions of the self-similar problem for two-component medium, Preprint No 189, Keldysh Inst. of Appl. Math., Acad. Sci. USSR, M., 1986

[12] Kurdyumov S. P., Kurkina E. S., Telkovskaja O. V., “Blowup regimes in two-component medium”, Math. Modeling, 1:1 (1989), 35–50 | MR

[13] Dimova S. N., Kaschiyev M. S., Kurdyumov S. P., “Numerical analysis of the eigenfunctions for the combustion of a nonlinear medium in the radial-symmetric case”, USSR Comput. Maths and Math. Phys., 29:6 (1989), 61–73 | DOI | MR | Zbl

[14] Dimova S. N., Vasileva D. P., “Lumped mass finite element method with interpolation of the nonlinear coefficients for a quasilinear singular parabolic equation”, Numer. Meth. PDE (to appear)

[15] Gavurin M. K., “Nonlinear functional equations and continuous analogues of iterative methods”, Izv. Vuz. Matem., 5:6 (1958), 18–31 | MR | Zbl

[16] Zhidkov E. P., Makarenko G. I., Puzynin I. V., Numerical methods of the mechanics of a continuous medium, 4, no. 1, Vichisl. Tcentr, Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1973, 123–158 | MR

[17] Puzynin I. V., Puzynina T., Algorithms and programs for solving certain problems in physics, KGK1-74-34, Budapest, 1974, 93–111

[18] Gurevich M. I., Telkovskaja O. V., Existence of self-similar solutions for the quasilinear heat equation with left front, Preprint No 565/1, Inst. of Nucl. Energy, M., 1992 | Zbl

[19] Thomee V., Galerkin finite elements methods for parabolic equations, Lect. Notes Math., 1054, 1984 | MR | Zbl

[20] Christie I., Griffiths D. F., Mitchel A. R., Sanz-Serna J. M., “Product approximation for nonlinear problems in the finite element method”, IMA J. Numer. Analys., 1 (1981), 153–266 | MR

[21] Chen C. M., Larsson S., Zhang N.-Y., “Error estimates of optimal order for finite element methods with interpolated coefficients for the nonlinear heat equation”, IMA J. Numer. Analys., 9 (1989), 507–524 | DOI | MR | Zbl

[22] Novikov V. A., Novikov E. A., “Stability control of explicit onestep methods for integration of ordinary differential equations”, Dokl. Akad. Nauk SSSR, 272:5 (1984), 1058–1062 | MR

[23] Dimova S. N., Ivanova D. I., Finite element method with special mesh refinement for analysis of single point blow-up solutions, E11-91-3, Communs JINR, Dubna, 1991 | MR

[24] Galaktionov V. A., Kurdyumov S. P., Samarskii A. A., “Approximate self-similar solutions of a class of quasilinear heat transfer equations with a source”, Math. Sbornik, 124:2 (1984), 163–188 | MR

[25] Elenin G. G., Kurdyumov S. P., Conditions for the complexity of the organization of a non-linear dissipative medium, Preprint No 106, Keldysh Inst. of Appl. Math., Acad. Sci. USSR, M., 1977 | MR