The convergence of the Schwarz method for an arbitrary number of subdomains
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 2, pp. 260-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1995_35_2_a6,
     author = {A. V. Rachkov},
     title = {The convergence of the {Schwarz} method for an arbitrary number of subdomains},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {260--270},
     year = {1995},
     volume = {35},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_2_a6/}
}
TY  - JOUR
AU  - A. V. Rachkov
TI  - The convergence of the Schwarz method for an arbitrary number of subdomains
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1995
SP  - 260
EP  - 270
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_2_a6/
LA  - ru
ID  - ZVMMF_1995_35_2_a6
ER  - 
%0 Journal Article
%A A. V. Rachkov
%T The convergence of the Schwarz method for an arbitrary number of subdomains
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1995
%P 260-270
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_2_a6/
%G ru
%F ZVMMF_1995_35_2_a6
A. V. Rachkov. The convergence of the Schwarz method for an arbitrary number of subdomains. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 2, pp. 260-270. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_2_a6/

[1] Schwarz H. A., “Übergeinige Abbildungsaufgaben”, Ges. Math. Abhandl., 2 (1869), 65–83

[2] Schwarz H. A., “Über die Integration der partiellen Differentialgleichung $\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=0$ unter vorgeschriebenen Grenz- und Unstetigkeitsbedingungen”, M. B. Preußische Akad., 1870, 767–795 | Zbl

[3] Gurvits A., Kurant P., Teoriya funktsii, Nauka, M., 1968 | MR

[4] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, M.-L., 1962 | MR

[5] Koppenfels V., Shtalman F., Praktika konformnykh otobrazhenii, Izd-vo inostr. lit., M., 1963

[6] Smirnov V. I., Kurs vysshei matematiki, v. IV, Gostekhteorizdat, M.-L., 1951

[7] Badea L., “A generalization of the Schwarz alternating method to an arbitrary number of subdomains”, Numer. Math., 55:1 (1989), 61–81 | DOI | MR | Zbl

[8] Vlasov V. I., Volkov D. B., Rachkov A. V., “Reshenie zadachi o kruchenii shvellera”, Soobsch. po prikl. matem., VTs AN SSSR, M., 1989 | MR

[9] Vlasov V. I., Volkov D. B., Rachkov A. V., “Chislenno-analiticheskii metod resheniya uravneniya Puassona v slozhnykh oblastyakh”, Soobsch. po prikl. matem., VTs AN SSSR, M., 1990

[10] Vlasov V. I., Kraevye zadachi v oblastyakh s krivolineinoi granitsei, VTs AN SSSR, M., 1987 | MR

[11] Volkov E. A., “O metode regulyarnykh sostavnykh setok dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN SSSR, 140, M., 1976, 68–102 | MR | Zbl

[12] Romanova S. E., “O reshenii alterniruyuschim metodom Shvartsa, smeshannoi kraevoi zadachi dlya raznostnogo uravneniya Laplasa na stupenchatykh oblastyakh”, Dokl. AN SSSR, 245:3 (1979), 536–539 | MR | Zbl

[13] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[14] Neumann C., “Zur Theorie des logarithmischen und Newton'schen Potentials”, Leipziger Ber., 22 (1870), 264–321

[15] Miller K., “Numerical analogs to the Schwarz alternating procedure”, Numer. Math., 7:2 (1965), 91–103 | DOI | MR

[16] Zhiqiang Cai, Benju Guo, “Error estimates for a Schwarz alternating procedure on $L$-shaped regions”, J. Appl. Math. and Comput., 28:1 (1988), 39–46 | DOI | MR | Zbl

[17] Arutyunyan H. X., Abramyan B. L., Kruchenie uprugikh tel, Fizmatgiz, M., 1963 | MR