The suppression of the growth of nonlinear wave packets by the elasticity of the surface around which flow occurs
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 1, pp. 95-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1995_35_1_a7,
     author = {I. V. Savenkov},
     title = {The suppression of the growth of nonlinear wave packets by the elasticity of the surface around which flow occurs},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {95--103},
     year = {1995},
     volume = {35},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_1_a7/}
}
TY  - JOUR
AU  - I. V. Savenkov
TI  - The suppression of the growth of nonlinear wave packets by the elasticity of the surface around which flow occurs
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1995
SP  - 95
EP  - 103
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_1_a7/
LA  - ru
ID  - ZVMMF_1995_35_1_a7
ER  - 
%0 Journal Article
%A I. V. Savenkov
%T The suppression of the growth of nonlinear wave packets by the elasticity of the surface around which flow occurs
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1995
%P 95-103
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_1_a7/
%G ru
%F ZVMMF_1995_35_1_a7
I. V. Savenkov. The suppression of the growth of nonlinear wave packets by the elasticity of the surface around which flow occurs. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 1, pp. 95-103. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_1_a7/

[1] Kramer M. O., “Boundary-layer stabilization by distributed damping”, J. Aeronaut. Sci., 24 (1957), 459

[2] Kramer M. O., “Boundary-layer stabilization by distributed damping”, J. Amer. Soc. Naval Engrs., 72 (1960), 25–33 | DOI

[3] Carpenter P. W., Garrad A. D., “The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities”, J. Fluid Mech., 155 (1985), 465–510 | DOI | Zbl

[4] Carpenter P. W., Garrad A. D., “The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities”, J. Fluid Mech., 170 (1986), 199–232 | DOI | Zbl

[5] Neiland V. Ya., “K teorii otryva laminarnogo pogranichnogo sloya v sverkhzvukovom potoke”, Izv. AN SSSR. Ser. mekhan. zhidkosti i gaza, 1969, no. 4, 53–58

[6] Stewartson K., Williams P. G., “Self-induced separation”, Proc. Roy. Soc. A, 312:1509 (1969), 181–206 | DOI | Zbl

[7] Ryzhov O. S., Terentev E. D., “O perekhodnom rezhime, kharakterizuyuschem zapusk vibratora v dozvukovom pogranichnom sloe na plastinke”, Prikl. matem. i mekhan., 50:6 (1986), 974–986 | Zbl

[8] Ryzhov O. S., Terent'ev E. D., “Vortex spots in the boundary layer”, Fluid Dynamic Trans., 13, PWN, Warsaw, 1987, 205–234

[9] Savenkov I. V., “O vyazkoi neustoichivosti giperzvukovogo obtekaniya klina”, Izv. RAN. Ser. mekhan. zhidkosti i gaza, 1992, no. 2, 55–60 | Zbl

[10] Duck P. W., “Laminar flow over unsteady humps: the formation of waves”, J. Fluid Mech., 160 (1985), 465–498 | DOI | MR | Zbl

[11] Duck P. W., “Unsteady triple-deck flows leading to instabilities”, Proc. IU-TAM Sympos. Boundary-Layer Separation, Springer, Berlin etc., 1987, 297–312

[12] Peridier V. J., Smith F. T., Walker J. D. A., “Vortex-induced boundary-layer separation. Part 1. The unsteady limit problem $\operatorname{Re}\to0$”, J. Fluid Mech., 232 (1992), 99–131 | DOI | MR

[13] Smith F. T., “Finite-time break-up can occur in any unsteady interacting boundary layer”, Mathematika, 35:70 (1988), 256–273 | DOI | MR | Zbl