@article{ZVMMF_1995_35_1_a7,
author = {I. V. Savenkov},
title = {The suppression of the growth of nonlinear wave packets by the elasticity of the surface around which flow occurs},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {95--103},
year = {1995},
volume = {35},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_1_a7/}
}
TY - JOUR AU - I. V. Savenkov TI - The suppression of the growth of nonlinear wave packets by the elasticity of the surface around which flow occurs JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1995 SP - 95 EP - 103 VL - 35 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_1_a7/ LA - ru ID - ZVMMF_1995_35_1_a7 ER -
%0 Journal Article %A I. V. Savenkov %T The suppression of the growth of nonlinear wave packets by the elasticity of the surface around which flow occurs %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1995 %P 95-103 %V 35 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_1_a7/ %G ru %F ZVMMF_1995_35_1_a7
I. V. Savenkov. The suppression of the growth of nonlinear wave packets by the elasticity of the surface around which flow occurs. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 1, pp. 95-103. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_1_a7/
[1] Kramer M. O., “Boundary-layer stabilization by distributed damping”, J. Aeronaut. Sci., 24 (1957), 459
[2] Kramer M. O., “Boundary-layer stabilization by distributed damping”, J. Amer. Soc. Naval Engrs., 72 (1960), 25–33 | DOI
[3] Carpenter P. W., Garrad A. D., “The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities”, J. Fluid Mech., 155 (1985), 465–510 | DOI | Zbl
[4] Carpenter P. W., Garrad A. D., “The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities”, J. Fluid Mech., 170 (1986), 199–232 | DOI | Zbl
[5] Neiland V. Ya., “K teorii otryva laminarnogo pogranichnogo sloya v sverkhzvukovom potoke”, Izv. AN SSSR. Ser. mekhan. zhidkosti i gaza, 1969, no. 4, 53–58
[6] Stewartson K., Williams P. G., “Self-induced separation”, Proc. Roy. Soc. A, 312:1509 (1969), 181–206 | DOI | Zbl
[7] Ryzhov O. S., Terentev E. D., “O perekhodnom rezhime, kharakterizuyuschem zapusk vibratora v dozvukovom pogranichnom sloe na plastinke”, Prikl. matem. i mekhan., 50:6 (1986), 974–986 | Zbl
[8] Ryzhov O. S., Terent'ev E. D., “Vortex spots in the boundary layer”, Fluid Dynamic Trans., 13, PWN, Warsaw, 1987, 205–234
[9] Savenkov I. V., “O vyazkoi neustoichivosti giperzvukovogo obtekaniya klina”, Izv. RAN. Ser. mekhan. zhidkosti i gaza, 1992, no. 2, 55–60 | Zbl
[10] Duck P. W., “Laminar flow over unsteady humps: the formation of waves”, J. Fluid Mech., 160 (1985), 465–498 | DOI | MR | Zbl
[11] Duck P. W., “Unsteady triple-deck flows leading to instabilities”, Proc. IU-TAM Sympos. Boundary-Layer Separation, Springer, Berlin etc., 1987, 297–312
[12] Peridier V. J., Smith F. T., Walker J. D. A., “Vortex-induced boundary-layer separation. Part 1. The unsteady limit problem $\operatorname{Re}\to0$”, J. Fluid Mech., 232 (1992), 99–131 | DOI | MR
[13] Smith F. T., “Finite-time break-up can occur in any unsteady interacting boundary layer”, Mathematika, 35:70 (1988), 256–273 | DOI | MR | Zbl