@article{ZVMMF_1995_35_11_a14,
author = {G. A. Bordakov and I. I. Karpov and S. Ya. Sekerzh-Zen'kovich and I. K. Shingareva},
title = {Analytic derivation of the dependence of the frequency of standing surface waves on amplitude in a fluid of finite depth},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1766--1773},
year = {1995},
volume = {35},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_11_a14/}
}
TY - JOUR AU - G. A. Bordakov AU - I. I. Karpov AU - S. Ya. Sekerzh-Zen'kovich AU - I. K. Shingareva TI - Analytic derivation of the dependence of the frequency of standing surface waves on amplitude in a fluid of finite depth JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1995 SP - 1766 EP - 1773 VL - 35 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_11_a14/ LA - ru ID - ZVMMF_1995_35_11_a14 ER -
%0 Journal Article %A G. A. Bordakov %A I. I. Karpov %A S. Ya. Sekerzh-Zen'kovich %A I. K. Shingareva %T Analytic derivation of the dependence of the frequency of standing surface waves on amplitude in a fluid of finite depth %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1995 %P 1766-1773 %V 35 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_11_a14/ %G ru %F ZVMMF_1995_35_11_a14
G. A. Bordakov; I. I. Karpov; S. Ya. Sekerzh-Zen'kovich; I. K. Shingareva. Analytic derivation of the dependence of the frequency of standing surface waves on amplitude in a fluid of finite depth. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 11, pp. 1766-1773. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_11_a14/
[1] Rayleigh, Lord, “Deep, water waves, progressive or stationary, to the third order of approximation”, Proc. Roy. Soc. London. Ser. A, 91 (1915), 345–353 | DOI | Zbl
[2] Penney W. G., Price A. T., “Finite periodic stationary gravity waves in a perfect fluid”, Philos. Trans. Roy. Soc. London. Ser. A, 244 (1952), 254–284 | DOI | MR
[3] Tadjbakhsh I., Keller J. B., “Standing surface waves of finite amplitude”, J. Fluid Mech., 8 (1960), 442–451 | DOI | MR | Zbl
[4] Vanden-Broeck J. M., Schwartz L. W., “Numerical calculation of standing waves in water of arbitrary uniform depth”, Phys. Fluids, 24 (1981), 812–815 | DOI | MR
[5] Bordakov G. A., Karpov I. I., Sekerzh-Zenkovich S. Ya., Shingareva I. K., “Parametricheskoe vozbuzhdenie poverkhnostnykh voln pri glubine zhidkosti blizkoi k kriticheskoi”, Dokl. RAN, 334:6 (1994), 710–711
[6] Char B. W., Geddes K. O., Gonnet G. H., Monagan M. B., Watt S. M., Maple reference manual, Watcom Publs Ltd, Waterloo, 1988
[7] Sekerzh-Zenkovich Ya. I., “K teorii stoyachikh voln konechnoi amplitudy na poverkhnosti tyazheloi zhidkosti konechnoi glubiny”, Izv. AN SSSR. Geogr. i geofiz., 15:1 (1951), 57–73
[8] Bordakov G. A., Sekerzh-Zen'covich S. Ya., Nonlinear Faraday resonance in two-layer fluid of finite depth, Preprint No 475, IPM USSR AS, M., 1990
[9] Aoki H., “Higher order calculation of finite periodic standing gravity waves by means of the computer”, J. Phis. Soc. Japan, 49:4 (1980), 1598–1606 | DOI | MR