Finite-dimensional approximation of the inputs of hyperbolic variational inequalities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 11, pp. 1615-1629 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1995_35_11_a1,
     author = {V. I. Maksimov},
     title = {Finite-dimensional approximation of the inputs of hyperbolic variational inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1615--1629},
     year = {1995},
     volume = {35},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_11_a1/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - Finite-dimensional approximation of the inputs of hyperbolic variational inequalities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1995
SP  - 1615
EP  - 1629
VL  - 35
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_11_a1/
LA  - ru
ID  - ZVMMF_1995_35_11_a1
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T Finite-dimensional approximation of the inputs of hyperbolic variational inequalities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1995
%P 1615-1629
%V 35
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_11_a1/
%G ru
%F ZVMMF_1995_35_11_a1
V. I. Maksimov. Finite-dimensional approximation of the inputs of hyperbolic variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 11, pp. 1615-1629. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_11_a1/

[1] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988 | MR | Zbl

[2] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[3] Bukhgeim A. L., Uravneniya Volterra i obratnye zadachi, Nauka, Novosibirsk, 1983 | MR

[4] Goncharskii A. V., Cherepashuk A. M., Yagola A. G., Chislennye metody resheniya obratnykh zadach astrofiziki, Nauka, M., 1978 | MR

[5] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach, Nauka, M., 1978

[6] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, Novosibirsk, 1980 | MR

[7] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[8] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[9] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–68 | MR

[10] Kryazhimskii A. V., Osipov Yu. S., “Obratnye zadachi dinamiki i upravlyaemye modeli”, Mekhan. i nauchno-tekhn. progress, v. 1, Obschaya i prikl. mekhan., Nauka, M., 1987, 196–211 | MR

[11] Osipov Yu. S., Kryazhimskii A. V., “Metod funktsii Lyapunova v zadache modelirovaniya dvizheniya”, Ustoichivost dvizheniya, Nauka, Novosibirsk, 1985, 53–56

[12] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[13] Korbich Yu. S., Maksimov V. I., Osipov Yu. S., “Dinamicheskoe modelirovanie upravlenii v nekotorykh parabolicheskikh sistemakh”, Prikl. matem. i mekhan., 54:3 (1990), 355–360 | MR | Zbl

[14] Kim A. V., Korotkii A. I., Osipov Yu. S., “Obratnye zadachi dinamiki dlya parabolicheskikh sistem”, Prikl. matem. i mekhan., 54:5 (1990), 756–761 | MR

[15] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., Zadachi dinamicheskoi regulyarizatsii dlya sistem s raspredelennymi parametrami, IMM UrO AN SSSR, Sverdlovsk, 1991

[16] Osipov Yu. S., Korotkii A. I., “Dinamicheskoe modelirovanie parametrov v giperbolicheskikh sistemakh”, Izv. AN SSSR. Tekhn. kibernetika, 1991, no. 2, 154–164 | MR | Zbl

[17] Maksimov V. I., “Ob ustoichivom reshenii obratnykh zadach dlya nelineinykh raspredelennykh sistem. I”, Differents. ur-niya, 26:12 (1990), 2059–2067 | MR

[18] Osipov Yu. S., Inverse problem of dynamics for systems described by parabolic inequality, IIASA WP-89-101, Laxenberg, Austria, 1989

[19] Osipov Yu. S., On the reconstruction of a parameter for hyperbolic system, IIASA WP-91-54, Laxenberg, Austria, 1991

[20] Maksimov V. I., “Modelirovanie neizvestnykh vozmuschenii v nelineinykh parabolicheskikh sistemakh – variatsionnykh neravenstvakh”, Izv. RAN. Tekhn. kibernetika, 1992, no. 1, 157–162 | Zbl

[21] Maksimov V. I., “On dynamical reconstruction in nonlinear parabolic systems”, Lect. Notes Control and Inform. Sci., 180, 1992, 404–413 | MR | Zbl

[22] Kryazhimskii A. V., Osipov Yu. S., “O metodakh pozitsionnogo modelirovaniya upravleniya v dinamicheskikh sistemakh”, Kachestvennye vopr. teorii differents. ur-nii i upravlyaemykh sistem, UPrO AN SSSR, Sverdlovsk, 1988, 34–44 | MR

[23] Glovinskii Z., Lions Zh.-L., Tremoler Z., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[24] Oben Zh.-P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR

[25] Syarle F., Metod konechnykh elementov dlya ellipticheskikh kraevykh zadach, Mir, M., 1980

[26] Tiba D., “Optimality conditions for distributed control problems with nonlinear state equations”, SIAM J. Control and Optimizat., 23:1 (1985), 85–110 | DOI | MR | Zbl

[27] Ciavaldini J. F., “Analyse numerique d'un probleme de Stefan a deux phases par une methode d'elements, finis”, SIAM J. Numer. Analys., 12:3 (1975), 464–487 | DOI | MR | Zbl

[28] Vdovin A. Yu., “Otsenki pogreshnosti v zadache dinamicheskogo vosstanovleniya upravleniya”, Zadachi pozitsionnogo modelirovaniya, UPrO AN SSSR, Sverdlovsk, 1986, 3–11