@article{ZVMMF_1995_35_10_a0,
author = {L. A. Knizhnerman},
title = {The quality of approximations to a well-isolated eigenvalue, and the arrangement of {{\textquotedblleft}Ritz} numbers{\textquotedblright} in a simple {Lanczos} process},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1459--1475},
year = {1995},
volume = {35},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_10_a0/}
}
TY - JOUR AU - L. A. Knizhnerman TI - The quality of approximations to a well-isolated eigenvalue, and the arrangement of “Ritz numbers” in a simple Lanczos process JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1995 SP - 1459 EP - 1475 VL - 35 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_10_a0/ LA - ru ID - ZVMMF_1995_35_10_a0 ER -
%0 Journal Article %A L. A. Knizhnerman %T The quality of approximations to a well-isolated eigenvalue, and the arrangement of “Ritz numbers” in a simple Lanczos process %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1995 %P 1459-1475 %V 35 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_10_a0/ %G ru %F ZVMMF_1995_35_10_a0
L. A. Knizhnerman. The quality of approximations to a well-isolated eigenvalue, and the arrangement of “Ritz numbers” in a simple Lanczos process. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 35 (1995) no. 10, pp. 1459-1475. http://geodesic.mathdoc.fr/item/ZVMMF_1995_35_10_a0/
[1] Lanczos C., “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators”, J. Res. Nat. Bur. Standards. Sect. B, 45 (1950), 225–280 | MR
[2] Parlett B., Simmetrichnaya problema sobstvennykh znachenii, Mir, M., 1983 | MR | Zbl
[3] Druskin V. L., Knizhnerman L. A., Ispolzovanie operatornykh ryadov po ortogonalnym mnogochlenam pri vychislenii funktsii ot samosopryazhennykh operatorov i obosnovanie fenomena Lantsosha, Dep. v VINITI 02.03.87, 1535-V87, IZMIR AN SSSR, M., 1987, 47 pp.
[4] Druskin V. L., Knizhnerman L. A., “Dva polinomialnykh metoda vychisleniya funktsii ot simmetrichnykh matrits”, Zh. vychisl. matem. i matem. fiz., 29:12 (1989), 1763–1775 | MR
[5] Druskin V. L., Knizhnerman L. A., “Otsenki oshibok v prostom protsesse Lantsosha pri vychislenii funktsii ot simmetrichnykh matrits i sobstvennykh znachenii”, Zh. vychisl. matem. i matem. fiz., 31:7 (1991), 970–983 | MR
[6] Paige C. C., The computation of eigenvalues and eigenvectors of very large sparse matrices, Ph.D. Thesis, Univ. of London, London, 1971 | Zbl
[7] Paige C. C., “Error analysis of the Lanczos algorithm for tridiagonalizing of a symmetric matrix”, J. Inst. Math. Applic., 18:3 (1976), 341–349 | DOI | MR | Zbl
[8] Paige C. C., “Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem”, Linear Algebra and Applic., 34 (1980), 235–258 | DOI | MR | Zbl
[9] Cullum J., Willoughby R. A., “Lanczos phenomenon – an interpretation based upon conjugate gradient optimization”, Linear Algebra and Applic., 29 (1980), 63–90 | DOI | MR | Zbl
[10] Greenbaum A., “Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences”, Linear Algebra and Applic., 113 (1989), 7–63 | DOI | MR | Zbl
[11] Druskin V., Knizhnerman L., Evaluation for Krylov subspace approximation to internal eigenvalues of large symmetric matrices and bounded self-adjoint operators with continuous spectrum, Res. note, Schlumberger-Doll Res., Ridgefield, Sept. 2, 1992, 20 pp.