@article{ZVMMF_1994_34_8_a7,
author = {V. I. Gryn' and L. V. Nitishinskaya},
title = {The solution of {Abel's} integral equation by a modified broken line of minimum length method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1219--1236},
year = {1994},
volume = {34},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_8_a7/}
}
TY - JOUR AU - V. I. Gryn' AU - L. V. Nitishinskaya TI - The solution of Abel's integral equation by a modified broken line of minimum length method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1994 SP - 1219 EP - 1236 VL - 34 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_8_a7/ LA - ru ID - ZVMMF_1994_34_8_a7 ER -
%0 Journal Article %A V. I. Gryn' %A L. V. Nitishinskaya %T The solution of Abel's integral equation by a modified broken line of minimum length method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1994 %P 1219-1236 %V 34 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_8_a7/ %G ru %F ZVMMF_1994_34_8_a7
V. I. Gryn'; L. V. Nitishinskaya. The solution of Abel's integral equation by a modified broken line of minimum length method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 8, pp. 1219-1236. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_8_a7/
[1] Piketov V. V., Preobrazhenskii N. G., “O nekotorykh problemakh diagnostiki nizkotemperaturnoi plazmy, reshaemykh s pomoschyu EVM”, Svoistva nizkotemperaturnoi plazmy i metody ee diagnostiki, Nauka, Novosibirsk, 1977, 138–176
[2] Preobrazhenskii N. G., Pikalov V. V., Neustoichivye zadachi diagnostiki plazmy, Nauka, Novosibirsk, 1982
[3] Voskoboinikov Yu. E., Preobrazhenskii N. G., Sedelnikov A. I., Matematicheskaya obrabotka eksperimenta v molekulyarnoi gazodinamike, Nauka, Novosibirsk, 1984
[4] Minerbo G. N., Levy M. E., “Inversion on Abel's integral equation by means of orthogonal polynomials”, SIAM J. Numer. Analys., 6:4 (1969), 598–616 | DOI | MR | Zbl
[5] Kosarev E. L., “O chislennom reshenii integralnogo uravneniya Abelya”, Zh. vychisl. matem. i matem. fiz., 13:6 (1973), 1591–1596 | MR | Zbl
[6] Galker J., Fischer D., “Uber den Einsatz von Spline-Funktionen zur Gläftung von Meßwerten bei der Abel-Inversion”, Ann. Phys., 33:3 (1976), 191–199
[7] Malinowski H., “A numerical method for solving the Abel integral equation”, Zastosov Mat., 16:2 (1978), 275–281 | MR | Zbl
[8] Voskoboinikov Yu. E., “Obraschenie uravneniya Abelya s ispolzovaniem kubicheskikh splainov”, Inversiya Abelya i ee obobscheniya, ITPM SO AN SSSR, Novosibirsk, 1978, 180–189
[9] Voskoboinikov Yu. E., “Kompleks programm dlya sglazhivaniya i differentsirovaniya eksperimentalnykh dannykh pri pomoschi $B$-splainov”, Algoritmich. i apparaturnye sredstva pererabotki informatsii, In-t teplofiz. SO AN SSSR, Novosibirsk, 1981, 43–54
[10] Smarzewski R., Malinovski H., “Numerical solution of a class of Abel integral equations”, J. Inst. Math. Appl., 22 (1978), 159–170 | DOI | MR | Zbl
[11] Marchenko N. A., Pergament A. X., Obrabotka interferogramm na EVM, Preprint No 42, IPMatem. AN SSSR, M., 1982, 28 pp.
[12] Pavlov N. N., “Splainy v vypuklykh mnozhestvakh i uslovnaya korrektnost zadachi resheniya nekotorykh integralnykh uravnenii pervogo roda”, Splainy i vychisl. matem., Vychisl. sistemy, 115, Novosibirsk, 1986, 98–104 | MR
[13] Vershinin V. V., Zavyalov Yu. S., Pavlov N. N., Ekstremalnye svoistva splainov i zadacha sglazhivaniya, Nauka, Novosibirsk, 1988 | MR
[14] Grebennikov A. I., “Regulyarizuyuschie algoritmy resheniya nekotorykh nekorrektnykh zadach s pomoschyu splainov”, Metody i algoritmy v chisl. analize, Izd-vo MGU, M., 1984, 128–140 | MR
[15] Morozov V. A., Metody regulyarizatsii neustoichivykh zadach, Izd-vo MGU, M., 1987 | MR
[16] Morozov V. A., Grebennikov A. I., Metody resheniya nekorrektno postavlennykh zadach. Algoritmicheskii aspekt, Izd-vo MGU, M., 1992 | MR | Zbl
[17] Gryn V. I., “Chislennoe reshenie obratnoi zadachi teorii perenosa izlucheniya s tsilindricheskoi simmetriei”, Soobsch. po prikl. matem., VTs AN SSSR, M., 1987
[18] Pavlov N. I., “Sglazhivayuschie splainy pervoi stepeni”, Splain-approksimatsiya i chisl. analiz., Vychisl. sistemy, 108, Novosibirsk, 1985, 31–36 | MR | Zbl
[19] Belaya N. I., “Algoritm postroeniya optimalnoi po tochnosti proizvodnoi funktsii v klasse $C_{2,L,N}$”, Izv. vuzov. Matematika, 1978, no. 8(195), 31–40 | MR | Zbl
[20] Ivanov V. V., “Ob optimalnykh po tochnosti algoritmakh priblizhennogo resheniya operatornykh uravnenii I roda”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 3-11 | Zbl
[21] Belaya N. I., Ivanov V. V., “Ob optimalnykh po tochnosti algoritmakh vosstanovleniya proizvodnykh funktsii nekotorykh klassov”, Zh. vychisl. matem. i matem. fiz., 25:3 (1985), 456–461 | MR | Zbl
[22] Belaya N. I., “Optimalnoe po tochnosti vosstanovlenie proizvodnykh funktsii klassa $C_{2,L^\pm,N,\varepsilon}$”, Optimizatsiya vychislenii i chisl. metody, IK AN USSR, Kiev, 1987, 41–44
[23] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl
[24] Logunov S. L., “Otsenki ustoichivosti dlya reshenii nekotorykh uslovnokorrektnykh zadach na mnozhestve funktsii, udovletvoryayuschikh usloviyu Geldera”, Zh. vychisl. matem. i matem. fiz., 31:6 (1991), 925–929 | MR
[25] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl
[26] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR
[27] Vladimirov V. S., “Osobennosti resheniya uravneniya perenosa”, Zh. vychisl. matem. i matem. fiz., 8:4 (1968), 842–852
[28] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl
[29] Gryn V. I., “Ob opredelenii koeffitsienta pogloscheniya pri sfericheskoi simmetrii”, Zh. vychisl. matem. i matem. fiz., 30:9 (1990), 1341–1356 | MR | Zbl