Algorithms of projective optimization which use the multipliers of previous iterations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 7, pp. 1095-1103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1994_34_7_a10,
     author = {V. I. Zorkaltsev},
     title = {Algorithms of projective optimization which use the multipliers of previous iterations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1095--1103},
     year = {1994},
     volume = {34},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_7_a10/}
}
TY  - JOUR
AU  - V. I. Zorkaltsev
TI  - Algorithms of projective optimization which use the multipliers of previous iterations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1994
SP  - 1095
EP  - 1103
VL  - 34
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_7_a10/
LA  - ru
ID  - ZVMMF_1994_34_7_a10
ER  - 
%0 Journal Article
%A V. I. Zorkaltsev
%T Algorithms of projective optimization which use the multipliers of previous iterations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1994
%P 1095-1103
%V 34
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_7_a10/
%G ru
%F ZVMMF_1994_34_7_a10
V. I. Zorkaltsev. Algorithms of projective optimization which use the multipliers of previous iterations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 7, pp. 1095-1103. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_7_a10/

[1] Zorkaltsev V. I., Otnositelno vnutrennyaya tochka optimalnykh reshenii, Komi fil. AN SSSR, Syktyvkar, 1984

[2] Zorkaltsev V. I., Metody prognozirovaniya i analiza effektivnosti funktsionirovaniya sistemy toplivosnabzheniya, Nauka, M., 1988

[3] Dikin I. I., “Iterativnoe reshenie zadach lineinogo i kvadratichnogo programmirovaniya”, Dokl. AN SSSR, 174 (1967), 747–748 | MR | Zbl

[4] Dikin I. I., Zorkaltsev V. I., Iterativnoe reshenie zadach matematicheskogo programmirovaniya, Nauka, Novosibirsk, 1980 | MR | Zbl

[5] Evtushenko Yu. T., Zhadan V. N., “Relaksatsionnyi metod resheniya zadach nelineinogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 17:4 (1977), 890–904 | MR

[6] Evtushenko Yu. T., Zhadan V. N., Barerno-proektivnye i barerno-nyutonovskie chislennye metody optimizatsii (sluchai lineinogo programmirovaniya), VTs RAN, M., 1992

[7] Adler I., Rende M. G., Veida G., An implementation of Kermarhar's Algorithm for linear programming, Operat. Res. Center, Rept 86-8, Univ. California, Barkeley, 1986

[8] Barnes E. R., A variation on Karmarhar's Algorithm for solving linear problems, Rept. IBM Boston Res. Center, May, 1986

[9] Wei Zi-Luan, “An interior point method for linear programming”, J. Comput. Math., 5:4 (1987), 342–351 | MR | Zbl

[10] Massunov S. L., “Matematicheskaya model optimizatsii rezhimov raboty elektrostantsii raionnoi energosistemy”, Probl. razvitiya i funktsionirovaniya energetiki evropeiskogo Severo-Vostoka SSSR, Komi fil. AN SSSR, Syktyvkar, 1986, 128–135

[11] Zorkaltsev V. I., Metod otnositelno vnutrennikh tochek, Komi fil. AN SSSR, Syktyvkar, 1986

[12] Sadov S. L., “Issledovanie effektivnosti algoritmov otnsitelno vnutrennikh tochek primenitelno k optimizatsii perspektivnykh planov TEK”, Vopr. teorii i praktiki sozdaniya regionalnykh avtomatizirovannykh sistem, Komi NTs UrO AN SSSR, Syktyvkar, 1988, 85–93

[13] Zorkaltsev V. I., Metod naimenshikh kvadratov i ego konkurenty, Sibirskii energetich. in-t SO RAN, Irkutsk, 1993