A spectral finite-difference method of calculating turbulent flows of an incompressible fluid in pipes and channels
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 6, pp. 909-925 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1994_34_6_a9,
     author = {N. V. Nikitin},
     title = {A spectral finite-difference method of calculating turbulent flows of an incompressible fluid in pipes and channels},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {909--925},
     year = {1994},
     volume = {34},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_6_a9/}
}
TY  - JOUR
AU  - N. V. Nikitin
TI  - A spectral finite-difference method of calculating turbulent flows of an incompressible fluid in pipes and channels
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1994
SP  - 909
EP  - 925
VL  - 34
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_6_a9/
LA  - ru
ID  - ZVMMF_1994_34_6_a9
ER  - 
%0 Journal Article
%A N. V. Nikitin
%T A spectral finite-difference method of calculating turbulent flows of an incompressible fluid in pipes and channels
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1994
%P 909-925
%V 34
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_6_a9/
%G ru
%F ZVMMF_1994_34_6_a9
N. V. Nikitin. A spectral finite-difference method of calculating turbulent flows of an incompressible fluid in pipes and channels. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 6, pp. 909-925. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_6_a9/

[1] Orszag S. A., Kells L. C., “Transition to turbulence in plane Poiseuille and plane Couette flow”, J. Fluid Mech., 96 (1980), 159–205 | DOI | MR | Zbl

[2] Kieiser L., Schumann U., “Spectral simulations of the laminar-turbulent transition process in plane Poiseuille flow”, Spectral Methods for Partial Differential Equations, SIAM, Philadelphia, 1984, 141–163 | MR

[3] Rozhdestvenskii B. L., Simakin I. N., “Modelirovanie turbulentnykh techenii v ploskom kanale”, Zh. vychisl. matem. i matem. fiz., 25:1 (1985), 96–121 | MR

[4] Kim J., Moin P., Moser R. D., “Turbulence statistics in fully developed channel flow at low Reynolds number”, J. Fluid Mech., 177 (1987), 133–166 | DOI

[5] Spaiart P. R., “Direct simulation of a turbulent boundary layer up to $R_\theta=1410$”, J. Fluid Mech., 187 (1988), 61–98 | DOI

[6] Laurien E., Kleiser L., “Numerical simulation of boundarý-layer transition and transition control”, J. Fluid Mech., 199 (1989), 403–440 | DOI | Zbl

[7] Nikitin N. V., “O zhestkom vozbuzhdenii avtokolebaanii v techenii Gagena–Puazeilya”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1984, no. 5, 181–183 | MR | Zbl

[8] Priimak V. G., Rozhdestvenskii B. L., “Vtorichnye techeniya vyazkoi neszhimaemoi zhidkosti v krugloi trube i ikh statisticheskie svoistva”, Dokl. AN SSSR, 297:6 (1987), 1326–1330

[9] Priimak V. G., “Rezultaty i vozmozhnosti pryamogo chislennogo modelirovaniya turbulentnykh techenii vyazkoi zhidkosti v krugloi trube”, Dokl. AN SSSR, 316:1 (1991), 71–76 | MR

[10] Ponomarev S. G., Priimak V. G., Rozhdestvenskii B. L., “Statisticheski statsionarnye resheniya uravnenii Nave–Stoksa v koltsevom kanale. Gidrodinamicheskie kharakteristiki i prostranstvenno-vremennaya struktura”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1354–1366 | MR

[11] Orsrag S. A., “Numerical simulation of incompressible flows within simple boundaries: accuracy”, J. Fluid Mech., 49 (1971), 75–112 | DOI | MR

[12] Rai M. M., Moin P., “Direct simulations of turbulent flow using finite-difference schemes”, J. Comput. Phys., 96 (1991), 15–53 | DOI | Zbl

[13] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[14] Orszag S. A., “Accurate solution of the Orr-Sommerfeld stability equation”, J. Fluid Mech., 50:4 (1971), 689–703 | DOI | Zbl

[15] Orszag S. A., “Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) represantations”, Stud. Appl. Math., 50:4 (1971), 293–327 | MR | Zbl

[16] Harlow F. H., Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface”, Phys. Fluids, 8:12 (1965), 2182–2189 | DOI | Zbl

[17] Williams G. P., “Numerical integration of the three-dimensional Navier–Stokes equations for incompressible flow”, J. Fluid Mech., 37:4 (1969), 727–750 | DOI | Zbl

[18] Zahn J.-P., Toomre J., Spiegel E. A., Gough D. O., “Nonlinear cellular motions in Poiseuille channel flow”, J. Fluid Mech., 64:2 (1974), 319–345 | DOI

[19] Nikitin N. V., “O kharaktere vtorichnykh techenii vo vraschayuscheisya trube”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1992, no. 6, 29–35 | Zbl

[20] Morrison W. R. B., Bullock K. J., Kronauer R. E., “Experimental evidence of waves in the sublayer”, J. Fluid Mech., 47:4 (1971), 639–656 | DOI

[21] Kim J., Hassain F., “Propagation velocity of perturbations in turbulent channel flow”, Phys. Fluids A, 5:3 (1993), 695–706 | DOI

[22] Rozhdestvenskii B. L., “O primenimosti raznostnykh metodov resheniya uravnenii Nave–Stoksa pri bolshikh chislakh Reinoldsa”, Dokl. AN SSSR, 211 (1973), 308–311

[23] Salwen H., Grosch C. E., “The stability of Poiseuille flow in a pipe circular cross-section”, J. Fluid Mech., 54:1 (1972), 93–112 | DOI | MR

[24] Vilgelmi T. A, Goldshtik M. A., Sapozhnikov V. A., “Ustoichivost techeniya v krugloi trube”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1973, no. 1, 20–24

[25] Priimak V. G., “Semeistvo psevdospektralnykh algoritmov integrirovaniya uravnenii Nave–Stoksa v tsilindricheskoi sisteme koordinat”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 1291–1309 | MR

[26] Patera A. T., Orszag S. A., “Finite amplitude stability of axisymmetric pipe flow”, J. Fluid Mech., 112 (198), 467–474 | DOI | MR | Zbl

[27] Nikuradse J., “Gesetzmässigkeiten der turbuienten Strömung in glatten Röhren”, VDI. Forschungsheft, 356 (1932)

[28] Shemer L., Wygnanski I., Kit E., “Pulsating flow in a pipe”, J. Fluid Mech., 153 (1985), 313–337 | DOI