A numerical-analytic method for solving Landau's two-dimensional kinetic equation in self-similar variables
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 6, pp. 898-908 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1994_34_6_a8,
     author = {N. A. Kuzmichova and A. P. Smirnov},
     title = {A numerical-analytic method for solving {Landau's} two-dimensional kinetic equation in self-similar variables},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {898--908},
     year = {1994},
     volume = {34},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_6_a8/}
}
TY  - JOUR
AU  - N. A. Kuzmichova
AU  - A. P. Smirnov
TI  - A numerical-analytic method for solving Landau's two-dimensional kinetic equation in self-similar variables
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1994
SP  - 898
EP  - 908
VL  - 34
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_6_a8/
LA  - ru
ID  - ZVMMF_1994_34_6_a8
ER  - 
%0 Journal Article
%A N. A. Kuzmichova
%A A. P. Smirnov
%T A numerical-analytic method for solving Landau's two-dimensional kinetic equation in self-similar variables
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1994
%P 898-908
%V 34
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_6_a8/
%G ru
%F ZVMMF_1994_34_6_a8
N. A. Kuzmichova; A. P. Smirnov. A numerical-analytic method for solving Landau's two-dimensional kinetic equation in self-similar variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 6, pp. 898-908. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_6_a8/

[1] Braginskii S. I., “Yavleniya perenosa plazmy”, Vopr. teorii plazmy, 1, Gosatomizdat, M., 1963, 183–272

[2] Zhdanov V. M., Yavleniya perenosa v mnogokomponentnoi plazme, Energoatomizdat, M., 1982

[3] Gray D. R., Kilkenny J. D., “The measurement of' ion acoustic turbulence and reduced thermal conductivity caused by a large temperature gradient in a laser heated plasma”, Plasma Phys., 22 (1980), 81–84 | DOI

[4] Igitkhanov Yu. L., Krasheninnikov S. I., Kukushkin A. S., Yushmanov P. N., “Osobennosti protsessov perenosa v pristenochnoi plazme tokamaka”, Itogi nauki i tekhn. Ser. Fiz. plazmy, 11, VINITI, M., 1990, 5–149

[5] Krasheninnikov S. I., “Nadteplovye chastitsy i teploprovodnost elektronov”, Zh. eksperim. i teor. fiz., 94 (1988), 166–171

[6] Dnestrovskii Yu. N., Kostomarov D. P., Matematicheskoe modelirovanie plazmy, Nauka, M., 1982

[7] Bakunin O. C., Krasheninnikov S. I., Electron heat conduction and supra thermal particles, Preprint IAE-5291/6, I. V. Kurchatov Institute of Atomatic Energy, M., 1991

[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[9] Karetkina N. V., “Bezuslovno ustoichivaya raznostnaya skhema dlya parabolicheskikh uravnenii, soderzhaschikh pervye proizvodnye”, Zh. vychisl. matem. i matem. fiz., 20:1 (1980), 236–240 | MR | Zbl

[10] Raizer Yu. P., Fizika gazovogo razryada, Nauka, M., 1987

[11] Krasheninnikov S. I., Dvornikova N. A., Smirnov A. P., “2D modelling of the nonlocal effects on electron heat conduction (self-similar variables)”, Contribution to Plasma Phys., 30:1 (1990), 67–70 | DOI

[12] Bakunin O. G., Krasheninnikov S. I., Dvornikova N. A., Smirnov A. P., Electron heat conduction (nonlocal effects), ITER Rept ITER-IL-PH-13-0-S-23