The mixed finite element method in problems of the theory of shells
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 5, pp. 748-769 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1994_34_5_a7,
     author = {V. G. Golushkov and L. V. Maslovskaya},
     title = {The mixed finite element method in problems of the theory of shells},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {748--769},
     year = {1994},
     volume = {34},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a7/}
}
TY  - JOUR
AU  - V. G. Golushkov
AU  - L. V. Maslovskaya
TI  - The mixed finite element method in problems of the theory of shells
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1994
SP  - 748
EP  - 769
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a7/
LA  - ru
ID  - ZVMMF_1994_34_5_a7
ER  - 
%0 Journal Article
%A V. G. Golushkov
%A L. V. Maslovskaya
%T The mixed finite element method in problems of the theory of shells
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1994
%P 748-769
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a7/
%G ru
%F ZVMMF_1994_34_5_a7
V. G. Golushkov; L. V. Maslovskaya. The mixed finite element method in problems of the theory of shells. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 5, pp. 748-769. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a7/

[1] Koiter W. T., “On the nonlinear theory of thin elastic shells”, Proc. Koninklijke Nederlandse Akad. van Wetenchappen Ser. B, 69 (1966), 1–54 | MR

[2] Brezzi F., Raviart P., “Mixed finite element methods for 4th order elliptic equations”, Topics in Numer. Analys., Acad. Press, N. Y., 1978, 33–56 | MR

[3] Folk R. S., Osborn J. E., “Error estimate for mixed methods”, RAIRO. Nimer. Analys., 14:3 (1980), 249–277 | MR

[4] Babuška I., “Error-bounds for finite element method”, Numer. Math., 16 (1971), 322–333 | DOI | MR | Zbl

[5] Brezzi F., “On the existense, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers”, RAIRO, 8:2 (1974), 129–151 | MR | Zbl

[6] Johnson C., “On the convergence of a mixed finite element method for plate bending problems”, Numer. Math., 21 (1973), 43–62 | DOI | MR | Zbl

[7] Miyoshi T., “A finite element method for the solutions of fourth order partial differential equations”, Kumamoto J. Sci. (Math), 9 (1973), 87–116 | MR | Zbl

[8] Bernadou M., Ciarlet P. C., “Sur l'ellipticite du modele lineaire de coques de W. T. Kolter”, Lect. Notes in Econom. and Math. Systems, 134, 1976, 89–136 | MR | Zbl

[9] Maslovskaya L. V., Filippovich A. P., Golushkov V. G., “O smeshannykh variatsionnykh formulirovkakh zadach teorii obolochek”, Izv. vuzov. Matematika, 1985, no. 9, 37–43 | MR | Zbl

[10] Filippovich A. P., “Analiz smeshannykh skhem metoda konechnykh elementov v zadachakh o deformatsii pologakh obolochek”, Zh. vychisl. matem. i matem. fiz., 28:5 (1988), 741–754 | MR

[11] Kufner A., “Einige Eigenschaften der Soboleveschen Raume mit Belegungsfunktion”, Czechosl. Math. J., 15:4 (1965), 597–620 | MR

[12] Chernykh K. F., Lineinaya teoriya obolochek, Ch. 2, Izd-vo LGU, L., 1964

[13] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[14] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo ArmSSR, Erevan, 1979

[15] Maslovskaya L. V., “Neuluchshaemye otsenki skhodimosti polusmeshannogo metoda konechnykh elementov dlya osnovnykh kraevykh zadach teorii pologakh obolochek v poligonalnykh oblastyakh”, Zh. vychisl. matem. i matem. fiz., 30:4 (1990), 513–520 | MR