@article{ZVMMF_1994_34_5_a7,
author = {V. G. Golushkov and L. V. Maslovskaya},
title = {The mixed finite element method in problems of the theory of shells},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {748--769},
year = {1994},
volume = {34},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a7/}
}
TY - JOUR AU - V. G. Golushkov AU - L. V. Maslovskaya TI - The mixed finite element method in problems of the theory of shells JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1994 SP - 748 EP - 769 VL - 34 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a7/ LA - ru ID - ZVMMF_1994_34_5_a7 ER -
%0 Journal Article %A V. G. Golushkov %A L. V. Maslovskaya %T The mixed finite element method in problems of the theory of shells %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1994 %P 748-769 %V 34 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a7/ %G ru %F ZVMMF_1994_34_5_a7
V. G. Golushkov; L. V. Maslovskaya. The mixed finite element method in problems of the theory of shells. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 5, pp. 748-769. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a7/
[1] Koiter W. T., “On the nonlinear theory of thin elastic shells”, Proc. Koninklijke Nederlandse Akad. van Wetenchappen Ser. B, 69 (1966), 1–54 | MR
[2] Brezzi F., Raviart P., “Mixed finite element methods for 4th order elliptic equations”, Topics in Numer. Analys., Acad. Press, N. Y., 1978, 33–56 | MR
[3] Folk R. S., Osborn J. E., “Error estimate for mixed methods”, RAIRO. Nimer. Analys., 14:3 (1980), 249–277 | MR
[4] Babuška I., “Error-bounds for finite element method”, Numer. Math., 16 (1971), 322–333 | DOI | MR | Zbl
[5] Brezzi F., “On the existense, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers”, RAIRO, 8:2 (1974), 129–151 | MR | Zbl
[6] Johnson C., “On the convergence of a mixed finite element method for plate bending problems”, Numer. Math., 21 (1973), 43–62 | DOI | MR | Zbl
[7] Miyoshi T., “A finite element method for the solutions of fourth order partial differential equations”, Kumamoto J. Sci. (Math), 9 (1973), 87–116 | MR | Zbl
[8] Bernadou M., Ciarlet P. C., “Sur l'ellipticite du modele lineaire de coques de W. T. Kolter”, Lect. Notes in Econom. and Math. Systems, 134, 1976, 89–136 | MR | Zbl
[9] Maslovskaya L. V., Filippovich A. P., Golushkov V. G., “O smeshannykh variatsionnykh formulirovkakh zadach teorii obolochek”, Izv. vuzov. Matematika, 1985, no. 9, 37–43 | MR | Zbl
[10] Filippovich A. P., “Analiz smeshannykh skhem metoda konechnykh elementov v zadachakh o deformatsii pologakh obolochek”, Zh. vychisl. matem. i matem. fiz., 28:5 (1988), 741–754 | MR
[11] Kufner A., “Einige Eigenschaften der Soboleveschen Raume mit Belegungsfunktion”, Czechosl. Math. J., 15:4 (1965), 597–620 | MR
[12] Chernykh K. F., Lineinaya teoriya obolochek, Ch. 2, Izd-vo LGU, L., 1964
[13] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[14] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo ArmSSR, Erevan, 1979
[15] Maslovskaya L. V., “Neuluchshaemye otsenki skhodimosti polusmeshannogo metoda konechnykh elementov dlya osnovnykh kraevykh zadach teorii pologakh obolochek v poligonalnykh oblastyakh”, Zh. vychisl. matem. i matem. fiz., 30:4 (1990), 513–520 | MR