A block-grid method of increased accuracy for solving Dirichlet's problem for Laplace's equation on polygons
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 5, pp. 685-701 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1994_34_5_a3,
     author = {A. A. Dosiev},
     title = {A block-grid method of increased accuracy for solving {Dirichlet's} problem for {Laplace's} equation on polygons},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {685--701},
     year = {1994},
     volume = {34},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a3/}
}
TY  - JOUR
AU  - A. A. Dosiev
TI  - A block-grid method of increased accuracy for solving Dirichlet's problem for Laplace's equation on polygons
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1994
SP  - 685
EP  - 701
VL  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a3/
LA  - ru
ID  - ZVMMF_1994_34_5_a3
ER  - 
%0 Journal Article
%A A. A. Dosiev
%T A block-grid method of increased accuracy for solving Dirichlet's problem for Laplace's equation on polygons
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1994
%P 685-701
%V 34
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a3/
%G ru
%F ZVMMF_1994_34_5_a3
A. A. Dosiev. A block-grid method of increased accuracy for solving Dirichlet's problem for Laplace's equation on polygons. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 5, pp. 685-701. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_5_a3/

[1] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1976 | MR | Zbl

[2] Ilin V. P., Chislennye metody resheniya zadach elektrofiziki, Nauka, M., 1985 | MR

[3] Volkov E. A., “Metod sostavnykh setok dlya konechnykh i beskonechnykh oblastei s kusochno-gladkoi granitsei”, Tr. Matem. in-ta AN SSSR, 96, M., 1968, 117–148 | Zbl

[4] Volkov E. A., “O metode regulyarnykh sostavnykh setok dlya uravneniya Laplasa na mnogougolnikakh”, Tr. Matem. in-ta AN SSSR, 140, M., 1976, 68–102 | MR | Zbl

[5] Andreev V. B., “Smeshannaya zadacha dlya setochnogo uravneniya Laplasa v poluploskosti”, Dokl. AN SSSR, 234:5 (1977), 997–1000 | MR | Zbl

[6] Andreev V. B., “Asimptotika resheniya setochnogo uravneniya Laplasa v ugle”, Dokl. AN SSSR, 244:6 (1979), 1289–1293 | MR | Zbl

[7] Fryazinov I. V., “Raznostnye skhemy dlya uravneniya Laplasa v stupenchatykh oblastyakh”, Zh. vychisl. matem i matem. fiz., 18:5 (1978), 1170–1185 | MR | Zbl

[8] Fix G., “Higher-order Rayleigh–Ritz approximations”, Math. Meth., 18 (1969), 645–658 | MR

[9] Volkov E. A., “Bystro skhodyaschiisya metod kvadratur resheniya uravneniya Laplasa na mnogougolnikakh”, Dokl. AN SSSR, 238:5 (1978), 1036–1039 | MR | Zbl

[10] Volkov E. A., “Eksponentsialno skhodyaschiisya metod resheniya uravneniya Laplasa na mnogougolnikakh”, Matem. sb., 109(151):3(7) (1979), 323–354 | MR | Zbl

[11] Volkov E. A., “Priblizhennoe reshenie blochnym metodom uravneniya Laplasa na mnogougolnikakh pri analiticheskikh smeshannykh kraevykh usloviyakh”, Tr. Matem. in-ta AN SSSR, 201, M., 1992, 165–185 | Zbl

[12] Dosiev A. A., “Blochno-setochnyi metod povyshennoi tochnosti resheniya uravneniya Laplasa na mnogougolnikakh”, Dokl. RAN, 323:4 (1992), 628–631 | MR | Zbl

[13] Dosiev A. A., “Ob odnom priblizhennom metode resheniya zadachi Dirikhle dlya uravneniya Laplasa na stupenchatykh oblastyakh s razrezami”, Vses. shkola-konf. “Sovrem. probl. teorii funktsii”. Tezisy dokl. (Baku, 1989), 43

[14] Dosiev A. A., “Blochno-setochnyi metod resheniya zadachi Dirikhle dlya uravneniya Laplasa s granichnymi osobennostyami”, Vses. konf. “Differents. ur-niya i optimalnoe upravl.”Tezisy dokl. (Ashkhabad, 1990), 57–58

[15] Dosiev A. A., “Ob odnom priblizhennom metode resheniya zadachi Dirikhle dlya uravneniya Laplasa”, Pribl. metody resheniya operatornykh ur-nii, Izd-vo Bakinsk. un-ta, Baku, 1991, 34–38 | MR

[16] Dosiev A. A., Aliev A. Yu., “Ob odnom metode resheniya nelokalnykh zadach dlya uravneniya Laplasa”, Mezhdunar. nauchno-tekhn. konf. “Aktualnye probl. fundamentalnykh nauk”, v. 2, M., 1991, 115–117

[17] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[18] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl

[19] Volkov E. A., “Effektivnye otsenki pogreshnosti reshenii metodom setok kraevykh zadach dlya uravnenii Laplasa i Puassona na pryamougolnike i nekotorykh treugolnikakh”, Tr. Matem. in-ta AN SSSR, 74, M., 1966, 55–85 | Zbl

[20] Wasow W., “On the truncation error in the solution of Laplace's equation by finite differences”, J. Res. Nat. Bur. Standards, 4 (1952), 345–348 | MR

[21] Romanova S. E., “Ekonomichnyi metod resheniya raznostnogo uravneniya Laplasa na pryamougolnykh oblastyakh”, Dokl. AN SSSR, 252:1 (1980), 48–51 | MR | Zbl