@article{ZVMMF_1994_34_4_a16,
author = {D. B. Silin and N. G. Trin'ko},
title = {A modification of {Graham's} algorithm for the convexification of a positive-uniform function},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {631--636},
year = {1994},
volume = {34},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_4_a16/}
}
TY - JOUR AU - D. B. Silin AU - N. G. Trin'ko TI - A modification of Graham's algorithm for the convexification of a positive-uniform function JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1994 SP - 631 EP - 636 VL - 34 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_4_a16/ LA - ru ID - ZVMMF_1994_34_4_a16 ER -
%0 Journal Article %A D. B. Silin %A N. G. Trin'ko %T A modification of Graham's algorithm for the convexification of a positive-uniform function %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1994 %P 631-636 %V 34 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_4_a16/ %G ru %F ZVMMF_1994_34_4_a16
D. B. Silin; N. G. Trin'ko. A modification of Graham's algorithm for the convexification of a positive-uniform function. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 4, pp. 631-636. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_4_a16/
[1] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Matem. sb., 112:3 (1980), 307–330 | MR | Zbl
[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl
[3] Kiselev Yu. N., Muravei L. A., Petrov V. M., Silin D. B., “Nekotorye zadachi upravleniya tekhnologicheskimi protsessami v poluprovodnikovom proizvodstve”, Dinamika nelineinykh protsessov, Vses. seminar (tezisy dokl.) (Tallinn, 1987), M., 1987
[4] Silin D. B., Sturua B. G., “Modelirovanie protsessov ionno-luchevogo travleniya”, Sb. tezisov dokl. I Mezhdunar. nauchno-praktich. konf. molodykh uchenykh i spetsialistov v oblasti priborostroeniya Interpribor-90, v. 2, Informpribor, M., 1990, 15–16
[5] Dijkstra E. W., “The problem of the convex hull in three dimensions”, A Discipline of Program., Ch. 24, Prentice-Hall, Englewood Cliffs, New Jersey, 1976, 168–191
[6] Swart G., “Finding the convex hull facet by facet”, J. Algorithms, 6:1 (1985), 17–48 | DOI | MR | Zbl
[7] Kushnirenko A. G., Lebedev G. V., Programmirovanie dlya matematikov, Nauka, M., 1988 | Zbl
[8] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek pri priblizhennykh vychisleniyakh”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1386–1396 | MR | Zbl
[9] Preparata F., Sheimos M., Vychislitelnaya geometriya: Vvedenie, Mir, M., 1989 | MR | Zbl
[10] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek na osnove triangulyatsii”, Zh. vychisl. matem. i matem. fiz., 31:8 (1991), 1231–1242 | MR
[11] Chernykh O. L., “Postroenie vypukloi obolochki mnozhestva tochek v vide sistemy lineinykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 1213–1228 | MR | Zbl
[12] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973