Analysis of an algorithm for approximating convex bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 4, pp. 608-616 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1994_34_4_a12,
     author = {G. K. Kamenev},
     title = {Analysis of an algorithm for approximating convex bodies},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {608--616},
     year = {1994},
     volume = {34},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_4_a12/}
}
TY  - JOUR
AU  - G. K. Kamenev
TI  - Analysis of an algorithm for approximating convex bodies
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1994
SP  - 608
EP  - 616
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_4_a12/
LA  - ru
ID  - ZVMMF_1994_34_4_a12
ER  - 
%0 Journal Article
%A G. K. Kamenev
%T Analysis of an algorithm for approximating convex bodies
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1994
%P 608-616
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_4_a12/
%G ru
%F ZVMMF_1994_34_4_a12
G. K. Kamenev. Analysis of an algorithm for approximating convex bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 4, pp. 608-616. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_4_a12/

[1] Bushenkov V. A., “Chislennyi algoritm postroeniya proektsii mnogogrannykh mnozhestv”, Aerofiz. i prikl. matem., MFTI, M., 1981, 108–110

[2] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982

[3] Bushenkov V. A., “Iteratsionnyi metod postroeniya ortogonalnykh proektsii vypuklykh mnogogrannykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 25:9 (1985), 1285–1292 | MR | Zbl

[4] Kamenev G. K., Issledovanie iteratsionnykh metodov approksimatsii vypuklykh mnozhestv mnogogrannikami, VTs AN SSSR, M., 1986

[5] Lotov A. V., Vvedenie v ekonomiko-matematicheskoe modelirovanie, Nauka, M., 1984 | MR | Zbl

[6] Dzholdybaeva S. M., Kamenev G. K., “Chislennoe issledovanie effektivnosti algoritma approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 857–866 | MR | Zbl

[7] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR

[8] Kamenev G. K., “Ob effektivnosti khausdorfovykh algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 33:5 (1993), 796–805 | MR | Zbl

[9] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968 | MR

[10] Chernykh O. L., “Postroenie vypukloi obolochki mnozhestva tochek v vide sistemy lineinykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 1213–1228 | MR | Zbl

[11] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek pri priblizhennykh vychisleniyakh”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1386–1396 | MR | Zbl

[12] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[13] Karmanov V. G., Matematicheskoe programmirovanie, Nauka, M., 1975 | MR | Zbl

[14] Blyashke V., Krug i shar, Nauka, M., 1967 | MR

[15] Brooks J. N., Strantzen J. B., “Blaschke's rolling theorem in $\mathbf R^n$”, Mem. Amer. Math. Soc., 80, no. 405, 1980 | MR