On the unitary similarity of Hermitian Toeplitz matrices to real $(T+H)$- matrices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 2, pp. 301-305
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZVMMF_1994_34_2_a9,
author = {Kh. D. Ikramov},
title = {On the unitary similarity of {Hermitian} {Toeplitz} matrices to real $(T+H)$- matrices},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {301--305},
year = {1994},
volume = {34},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_2_a9/}
}
TY - JOUR AU - Kh. D. Ikramov TI - On the unitary similarity of Hermitian Toeplitz matrices to real $(T+H)$- matrices JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1994 SP - 301 EP - 305 VL - 34 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_2_a9/ LA - ru ID - ZVMMF_1994_34_2_a9 ER -
Kh. D. Ikramov. On the unitary similarity of Hermitian Toeplitz matrices to real $(T+H)$- matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 2, pp. 301-305. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_2_a9/
[1] Lee A., “Centrohermitian and skew-centrohermitian matrices”, Linear Algebra and its Appls., 29 (1980), 205–210 | DOI | MR | Zbl
[2] Wilkes D. M., Morgera-S. B., Noor F., Hayes M. H., “A Hermitian Toeplitz matrix is unitary similar to a real Touplitz-plus-Hankel matrix”, IEEE Trans. Signal Processing, 39:9 (1991), 2146–2148 | DOI | Zbl
[3] Goldstein M. J., “Reduction of the eigenproblem for Hermitian persymmetric matrices”, Math. Comput., 28:125 (1974), 237–238 | DOI | MR | Zbl