An algorithm for improving the convergence of an iterative method of solving optimal control problems by nonlinear deformation of the time axis
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 11, pp. 1741-1742
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZVMMF_1994_34_11_a17,
author = {A. A. Dynnikov},
title = {An algorithm for improving the convergence of an iterative method of solving optimal control problems by nonlinear deformation of the time axis},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1741--1742},
year = {1994},
volume = {34},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_11_a17/}
}
TY - JOUR AU - A. A. Dynnikov TI - An algorithm for improving the convergence of an iterative method of solving optimal control problems by nonlinear deformation of the time axis JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1994 SP - 1741 EP - 1742 VL - 34 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_11_a17/ LA - ru ID - ZVMMF_1994_34_11_a17 ER -
%0 Journal Article %A A. A. Dynnikov %T An algorithm for improving the convergence of an iterative method of solving optimal control problems by nonlinear deformation of the time axis %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1994 %P 1741-1742 %V 34 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_11_a17/ %G ru %F ZVMMF_1994_34_11_a17
A. A. Dynnikov. An algorithm for improving the convergence of an iterative method of solving optimal control problems by nonlinear deformation of the time axis. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 11, pp. 1741-1742. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_11_a17/
[1] Braison A., Kho Yu-Shi, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972
[2] Dynnikov A. A., “Ob odnom metode vtorogo poryadka resheniya zadach optimalnogo upravleniya”, Teor. i eksperim. issl. nekotorykh zadach aerogidromekhan., 1991, 65–75, M.
[3] Efimov O. V., “Metod vtorogo poryadka optimizatsii upravleniya nelineinykh dinamicheskikh sistem i ego primenenie dlya rascheta optimalnykh traektorii samoleta”, Uch. zap. TsAGI, 22:3 (1991) | MR
[4] Kelley H. J., Kopp R. E., Moyer H. G., A trajectory optimization technique based upon the theory of the second variation, AIAA, No. 63-415