An algorithm for improving the convergence of an iterative method of solving optimal control problems by nonlinear deformation of the time axis
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 11, pp. 1741-1742 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1994_34_11_a17,
     author = {A. A. Dynnikov},
     title = {An algorithm for improving the convergence of an iterative method of solving optimal control problems by nonlinear deformation of the time axis},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1741--1742},
     year = {1994},
     volume = {34},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_11_a17/}
}
TY  - JOUR
AU  - A. A. Dynnikov
TI  - An algorithm for improving the convergence of an iterative method of solving optimal control problems by nonlinear deformation of the time axis
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1994
SP  - 1741
EP  - 1742
VL  - 34
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_11_a17/
LA  - ru
ID  - ZVMMF_1994_34_11_a17
ER  - 
%0 Journal Article
%A A. A. Dynnikov
%T An algorithm for improving the convergence of an iterative method of solving optimal control problems by nonlinear deformation of the time axis
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1994
%P 1741-1742
%V 34
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_11_a17/
%G ru
%F ZVMMF_1994_34_11_a17
A. A. Dynnikov. An algorithm for improving the convergence of an iterative method of solving optimal control problems by nonlinear deformation of the time axis. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 11, pp. 1741-1742. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_11_a17/

[1] Braison A., Kho Yu-Shi, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972

[2] Dynnikov A. A., “Ob odnom metode vtorogo poryadka resheniya zadach optimalnogo upravleniya”, Teor. i eksperim. issl. nekotorykh zadach aerogidromekhan., 1991, 65–75, M.

[3] Efimov O. V., “Metod vtorogo poryadka optimizatsii upravleniya nelineinykh dinamicheskikh sistem i ego primenenie dlya rascheta optimalnykh traektorii samoleta”, Uch. zap. TsAGI, 22:3 (1991) | MR

[4] Kelley H. J., Kopp R. E., Moyer H. G., A trajectory optimization technique based upon the theory of the second variation, AIAA, No. 63-415