@article{ZVMMF_1994_34_10_a7,
author = {Yu. G. Smirnov},
title = {The solvability of vector integro-differential equations for the problem of the diffraction of an electromagnetic field by screens of arbitrary shape},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1461--1475},
year = {1994},
volume = {34},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_10_a7/}
}
TY - JOUR AU - Yu. G. Smirnov TI - The solvability of vector integro-differential equations for the problem of the diffraction of an electromagnetic field by screens of arbitrary shape JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1994 SP - 1461 EP - 1475 VL - 34 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_10_a7/ LA - ru ID - ZVMMF_1994_34_10_a7 ER -
%0 Journal Article %A Yu. G. Smirnov %T The solvability of vector integro-differential equations for the problem of the diffraction of an electromagnetic field by screens of arbitrary shape %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1994 %P 1461-1475 %V 34 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_10_a7/ %G ru %F ZVMMF_1994_34_10_a7
Yu. G. Smirnov. The solvability of vector integro-differential equations for the problem of the diffraction of an electromagnetic field by screens of arbitrary shape. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 34 (1994) no. 10, pp. 1461-1475. http://geodesic.mathdoc.fr/item/ZVMMF_1994_34_10_a7/
[1] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991
[2] Smirnov Yu. G., “O fredgolmovosti zadachi difraktsii na ploskom ogranichennom idealno provodyaschem ekrane”, Dokl. AN SSSR, 319:1 (1991), 147–149
[3] Smirnov Yu. G. P, “seudodiffefential equations for electrodynamic screen problem in $\mathbb R^3$”, Math. Methods in Electromagnetic Theory. 4-th Imternat. Seminar (15–24 September. Alushta, 1991), 171–182 | Zbl
[4] Smirnov Yu. G., “O fredgolmovosti sistemy psevdodifferentsialnykh uravnenii v zadache difraktsii na ogranichennom ekrane”, Differents. ur-niya, 28:1 (1992), 136–143
[5] Mischenko A. S., Vektornye rassloeniya i ikh primeneniya, Nauka, M., 1984 | MR
[6] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR
[7] Rempel Sh., Shultse B.-V., Teoriya indeksa ellipticheskikh kraevykh zadach, Mir, M., 1986 | MR | Zbl
[8] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR
[9] Costabel M., “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Analys., 19:3 (1988), 613–626 | DOI | MR
[10] Stephan E. P., “Boundary integral equations for screen problem in $\mathbb R^3$”, Integral Equations and Operator Theory, 10 (1987), 236–257 | DOI | MR
[11] Novikov S. P., Fomenko A. E., Elementy differentsialnoi geometrii i topologii, Nauka, M., 1987 | MR
[12] Kato T., Teoriya vozmuscheniya lineinykh operatorov, Mir, M., 1972 | Zbl
[13] Päivärinta L., Rempel S., “Corner singularities of solutions to $\Delta^{\pm1/2}u=f$ in two dimensions”, Asymptotic Analys., 5 (1992), 429–460 | MR