@article{ZVMMF_1993_33_9_a6,
author = {A. R. Maikov and A. G. Sveshnikov},
title = {Conservative difference schemes for non-stationary {Maxwell's} equations in three dimensions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1352--1367},
year = {1993},
volume = {33},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a6/}
}
TY - JOUR AU - A. R. Maikov AU - A. G. Sveshnikov TI - Conservative difference schemes for non-stationary Maxwell's equations in three dimensions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1993 SP - 1352 EP - 1367 VL - 33 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a6/ LA - ru ID - ZVMMF_1993_33_9_a6 ER -
%0 Journal Article %A A. R. Maikov %A A. G. Sveshnikov %T Conservative difference schemes for non-stationary Maxwell's equations in three dimensions %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1993 %P 1352-1367 %V 33 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a6/ %G ru %F ZVMMF_1993_33_9_a6
A. R. Maikov; A. G. Sveshnikov. Conservative difference schemes for non-stationary Maxwell's equations in three dimensions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 9, pp. 1352-1367. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a6/
[1] Bogdankevich L. S., Kuzelev M. V., Rukhadze A. A., “Plazmennaya SVCh-elektronika”, Uspekhi fiz. nauk, 133:1 (1981), 3–32
[2] Maikov A. R., Sveshnikov A. G., Yakunin S. A., “Matematicheskoe modelirovanie plazmennogo generatora sverkhvysokochastotnogo izlucheniya”, Zh. vychisl. matem. i matem. fiz., 25:6 (1985), 883–895 | MR
[3] Sveshnikov A. G., Yakunin S. A., “Chislennye modeli besstolknovitelnoi plazmodinamiki”, Matem. modelirovanie, 1:1 (1989), 1–25 | MR | Zbl
[4] Maikov A. R., Poezd A. D., Sveshnikov A. G., Yakunin S. A., “Raznostnye skhemy nachalno-kraevykh zadach dlya uravnenii Maksvella v neogranichennoi oblasti”, Zh. vychisl. matem. i matem. fiz., 29:2 (1989), 239–250 | MR
[5] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Ispolzovanie metoda opornykh operatorov dlya postroeniya raznostnykh analogov operatorov tenzornogo analiza”, Differents. ur-niya, 18:7 (1982), 1251–1256 | MR
[6] Kozlov N. I., Kondrateva A. I., Sidoryuk N. G., “Odin sposob resheniya mnogomernoi zadachi dlya uravnenii Maksvella”, Matem. modelirovanie, 1:7 (1989), 124–129 | MR | Zbl
[7] Maikov A. R., Sveshnikov A. G., Yakunin S. A., “Raznostnaya skhema dlya nestatsionarnykh uravnenii Maksvella v volnovodnykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 26:6 (1986), 851–863 | MR
[8] Poezd A. D., Yakunin S. A., “Nestatsionarnye nelokalnye po vremeni granichnye usloviya dlya poluotkrytykh tsilindricheskikh sistem”, Vestn. MGU. Ser. 15, 1988, no. 3, 10–21
[9] Poezd A. D., Yakunin S. A., “Diskretnye nestatsionarnye usloviya izlucheniya dlya tsilindricheskikh sistem. Teorema skhodimosti”, Zh. vychisl. matem. i matem. fiz., 30:9 (1990), 1323–1330 | MR
[10] Maikov A. R., Sveshnikov A. G., Yakunin S. A., “Nelokalnye usloviya izlucheniya dlya nestatsionarnoi sistemy uravnenii Maksvella”, Dokl. AN SSSR, 314:6 (1990), 1375–1379 | MR
[11] Bykhovskii E. B., “Reshenie smeshannoi zadachi dlya sistemy uravnenii Maksvella v sluchae idealno provodyaschei granitsy”, Vestn. LGU, 1957, no. 13, 250–286