Conservative difference schemes for non-stationary Maxwell's equations in three dimensions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 9, pp. 1352-1367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1993_33_9_a6,
     author = {A. R. Maikov and A. G. Sveshnikov},
     title = {Conservative difference schemes for non-stationary {Maxwell's} equations in three dimensions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1352--1367},
     year = {1993},
     volume = {33},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a6/}
}
TY  - JOUR
AU  - A. R. Maikov
AU  - A. G. Sveshnikov
TI  - Conservative difference schemes for non-stationary Maxwell's equations in three dimensions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1993
SP  - 1352
EP  - 1367
VL  - 33
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a6/
LA  - ru
ID  - ZVMMF_1993_33_9_a6
ER  - 
%0 Journal Article
%A A. R. Maikov
%A A. G. Sveshnikov
%T Conservative difference schemes for non-stationary Maxwell's equations in three dimensions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1993
%P 1352-1367
%V 33
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a6/
%G ru
%F ZVMMF_1993_33_9_a6
A. R. Maikov; A. G. Sveshnikov. Conservative difference schemes for non-stationary Maxwell's equations in three dimensions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 9, pp. 1352-1367. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a6/

[1] Bogdankevich L. S., Kuzelev M. V., Rukhadze A. A., “Plazmennaya SVCh-elektronika”, Uspekhi fiz. nauk, 133:1 (1981), 3–32

[2] Maikov A. R., Sveshnikov A. G., Yakunin S. A., “Matematicheskoe modelirovanie plazmennogo generatora sverkhvysokochastotnogo izlucheniya”, Zh. vychisl. matem. i matem. fiz., 25:6 (1985), 883–895 | MR

[3] Sveshnikov A. G., Yakunin S. A., “Chislennye modeli besstolknovitelnoi plazmodinamiki”, Matem. modelirovanie, 1:1 (1989), 1–25 | MR | Zbl

[4] Maikov A. R., Poezd A. D., Sveshnikov A. G., Yakunin S. A., “Raznostnye skhemy nachalno-kraevykh zadach dlya uravnenii Maksvella v neogranichennoi oblasti”, Zh. vychisl. matem. i matem. fiz., 29:2 (1989), 239–250 | MR

[5] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Ispolzovanie metoda opornykh operatorov dlya postroeniya raznostnykh analogov operatorov tenzornogo analiza”, Differents. ur-niya, 18:7 (1982), 1251–1256 | MR

[6] Kozlov N. I., Kondrateva A. I., Sidoryuk N. G., “Odin sposob resheniya mnogomernoi zadachi dlya uravnenii Maksvella”, Matem. modelirovanie, 1:7 (1989), 124–129 | MR | Zbl

[7] Maikov A. R., Sveshnikov A. G., Yakunin S. A., “Raznostnaya skhema dlya nestatsionarnykh uravnenii Maksvella v volnovodnykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 26:6 (1986), 851–863 | MR

[8] Poezd A. D., Yakunin S. A., “Nestatsionarnye nelokalnye po vremeni granichnye usloviya dlya poluotkrytykh tsilindricheskikh sistem”, Vestn. MGU. Ser. 15, 1988, no. 3, 10–21

[9] Poezd A. D., Yakunin S. A., “Diskretnye nestatsionarnye usloviya izlucheniya dlya tsilindricheskikh sistem. Teorema skhodimosti”, Zh. vychisl. matem. i matem. fiz., 30:9 (1990), 1323–1330 | MR

[10] Maikov A. R., Sveshnikov A. G., Yakunin S. A., “Nelokalnye usloviya izlucheniya dlya nestatsionarnoi sistemy uravnenii Maksvella”, Dokl. AN SSSR, 314:6 (1990), 1375–1379 | MR

[11] Bykhovskii E. B., “Reshenie smeshannoi zadachi dlya sistemy uravnenii Maksvella v sluchae idealno provodyaschei granitsy”, Vestn. LGU, 1957, no. 13, 250–286