On the nonlinear vibrations equation with a coefficient containing an integral
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 9, pp. 1324-1332 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1993_33_9_a4,
     author = {Huynh Ba Lan and Le Thai Thanh and Nguyen Thanh Long and Nguyen Thuan Bang and Tran Luu Cuong and Trinh Ngoc Minh},
     title = {On the nonlinear vibrations equation with a coefficient containing an integral},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1324--1332},
     year = {1993},
     volume = {33},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a4/}
}
TY  - JOUR
AU  - Huynh Ba Lan
AU  - Le Thai Thanh
AU  - Nguyen Thanh Long
AU  - Nguyen Thuan Bang
AU  - Tran Luu Cuong
AU  - Trinh Ngoc Minh
TI  - On the nonlinear vibrations equation with a coefficient containing an integral
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1993
SP  - 1324
EP  - 1332
VL  - 33
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a4/
LA  - en
ID  - ZVMMF_1993_33_9_a4
ER  - 
%0 Journal Article
%A Huynh Ba Lan
%A Le Thai Thanh
%A Nguyen Thanh Long
%A Nguyen Thuan Bang
%A Tran Luu Cuong
%A Trinh Ngoc Minh
%T On the nonlinear vibrations equation with a coefficient containing an integral
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1993
%P 1324-1332
%V 33
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a4/
%G en
%F ZVMMF_1993_33_9_a4
Huynh Ba Lan; Le Thai Thanh; Nguyen Thanh Long; Nguyen Thuan Bang; Tran Luu Cuong; Trinh Ngoc Minh. On the nonlinear vibrations equation with a coefficient containing an integral. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 9, pp. 1324-1332. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a4/

[1] Dmitrieva Zh. H., “Ob ustoichivykh resheniyakh v nelineinykh kolebaniyakh pryamougolnykh plastin pri statisticheskikh nagruzkakh”, Prikl. mekhan., 4, L., 1979, 189–197

[2] Pokhozhaev S. I., “Ob odnom klasse kvazilineinykh giperbolicheskikh sistem”, Tr. MEI, 146, M., 1972, 116–132

[3] Lions J.-L., Quelques methodes de resolution des problemes aux limites non-lineaires, Dunod, Paris; Gauthier-Villars, 1969 | MR | Zbl