The problem of determining the coefficient in the nonlinear stationary heat-conduction equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 9, pp. 1294-1304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1993_33_9_a2,
     author = {A. M. Denisov and S. I. Solovjeva},
     title = {The problem of determining the coefficient in the nonlinear stationary heat-conduction equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1294--1304},
     year = {1993},
     volume = {33},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a2/}
}
TY  - JOUR
AU  - A. M. Denisov
AU  - S. I. Solovjeva
TI  - The problem of determining the coefficient in the nonlinear stationary heat-conduction equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1993
SP  - 1294
EP  - 1304
VL  - 33
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a2/
LA  - ru
ID  - ZVMMF_1993_33_9_a2
ER  - 
%0 Journal Article
%A A. M. Denisov
%A S. I. Solovjeva
%T The problem of determining the coefficient in the nonlinear stationary heat-conduction equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1993
%P 1294-1304
%V 33
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a2/
%G ru
%F ZVMMF_1993_33_9_a2
A. M. Denisov; S. I. Solovjeva. The problem of determining the coefficient in the nonlinear stationary heat-conduction equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 9, pp. 1294-1304. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_9_a2/

[1] Ermokhin N. V., Kovalev B. M., Kulik P. P., Ryabyi V. A., “Temperaturnaya zavisimost elektroprovodnosti plotnoi tsezievoi plazmy, poluchennoi impulsnym izobarnym omicheskim nagrevom”, Teplofiz. vysokikh t-r, 15:4 (1977), 695–702

[2] Anikonov Yu. E., “Ob odnoi obratnoi zadache dlya obyknovennogo differentsialnogo uravneniya”, Matem. zametki, 12:2 (1972), 163–166 | MR | Zbl

[3] Denisov A. M., “Obratnye zadachi dlya nelineinykh obyknovennykh differentsialnykh uravnenii”, Dokl. AN SSSR, 307:5 (1989), 1040–1042

[4] Lorenzi A., “An inverse spectral problem for a nonlinear ordinary differential equation”, Appl. Analys., 46 (1992), 129–143 | DOI | MR | Zbl

[5] Denisov A., Lorenzi A., “Identification of nonlinear terms in boundary value problems related to ordinary differential equations”, Different. and Integral Equations, 5:3 (1992), 567–579 | MR | Zbl