@article{ZVMMF_1993_33_7_a5,
author = {G. G. Malinetskii and G. Z. Tsertsvadze},
title = {The investigation of the {Lyapunov} spectrum of the {Kuramoto{\textendash}Tsuzuki} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1043--1053},
year = {1993},
volume = {33},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_7_a5/}
}
TY - JOUR AU - G. G. Malinetskii AU - G. Z. Tsertsvadze TI - The investigation of the Lyapunov spectrum of the Kuramoto–Tsuzuki equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1993 SP - 1043 EP - 1053 VL - 33 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_7_a5/ LA - ru ID - ZVMMF_1993_33_7_a5 ER -
%0 Journal Article %A G. G. Malinetskii %A G. Z. Tsertsvadze %T The investigation of the Lyapunov spectrum of the Kuramoto–Tsuzuki equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1993 %P 1043-1053 %V 33 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_7_a5/ %G ru %F ZVMMF_1993_33_7_a5
G. G. Malinetskii; G. Z. Tsertsvadze. The investigation of the Lyapunov spectrum of the Kuramoto–Tsuzuki equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 7, pp. 1043-1053. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_7_a5/
[1] Lorents E. N., “Determinirovannoe neperiodicheskoe techenie”, Strannye attraktory, Mir, M., 1981, 88–116 | MR
[2] Wolf A., Swift J. B., Swinney H. L., Vastano J. A., “Determining Lyapunov exponents from a time series”, Physica D, 16:3 (1985), 285–317 | DOI | MR | Zbl
[3] Akhromeeva T. S., Kurdyumov S. P., Malinetskii G. G., Samarskii A. A., Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR | Zbl
[4] Constantin P., Foias C., “Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations”, Communs Pure and Appl. Math., 38:1 (1985), 1–27 | DOI | MR | Zbl
[5] Doering C. R., Gibbon J. D., Holm D. D., Nicolaenko B., “Low-dimensional behaviour in the complex Ginzburg-Landau equation”, Nonlinearity, 1:2 (1988), 279–309 | DOI | MR | Zbl
[6] Vershik A. M., Kornfeld I. P., Sinai Ya. G., “Obschaya ergodicheskaya teoriya grupp preobrazovanii s invariantnoi meroi”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundamentalnye napravleniya, 2, VINITI, M., 1985, 5–111 | MR
[7] Babin A. V., Vishik M. I., “Attraktory evolyutsionnykh uravnenii s chastnymi proizvodnymi i otsenki ikh razmernosti”, Uspekhi matem. nauk, 38:4 (1983), 133–187 | MR | Zbl
[8] Kuramoto Y., Tsuzuki T., “On the formation of dissipative structures in reaction-diffusion systems”, Progr. Theor. Phys., 54:3 (1975), 687–699 | DOI
[9] Newell A. C., Whitehead J. A., “Finite bandwidth, finite amplitude convection”, J. Fluid Mech., 38 (1969), 279–303 | DOI | Zbl
[10] Andronov A. A., Fabrikant A. L., “Zatukhanie Landau, vetrovye volny i svistok”, Nelineinye volny, Nauka, M., 1979, 68–104
[11] Hagan P. S., “Spiral waves in reaction-diffusion equations”, SIAM J. Appl. Math., 42:4 (1982), 762–786 | DOI | MR | Zbl
[12] Akhromeeva T. S., Kurdyumov S. P., Malinetskii G. G., Samarskii A. A., “O klassifikatsii reshenii sistemy nelineinykh diffuzionnykh uravnenii v okrestnosti tochki bifurkatsii”, Itogi nauki i tekhn. Sovrem. probl. matem. Noveishie dostizheniya, 28, VINITI, M., 1987, 207–313
[13] Akhromeyeva T. S., Kurdyumov S. P., Malinetskii G. G., Samarskii A. A., “Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media”, Phys. Repts., 176:5–6 (1989), 179–372 | MR
[14] Keefe L., “Properties of Ginzburg-Landau attractors associated with their Lyapunov vectors and spectra”, Phys. Letts. A, 140:6 (1989), 317–322 | MR
[15] Malinetskii G. G., Tsertsvadze G. Z., Ob otsenkakh lyapunovskikh pokazatelei i nekotorykh drugikh kolichestvennykh kharakteristik uravneniya Kuramoto-Tsuzuki, Preprint No 74, IPMatem. RAN, M., 1992
[16] Oseledets V. I., “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli dinamicheskikh sistem”, Tr. Mosk. matem. ob-va, 19, M., 1968, 179–210 | Zbl
[17] Haken H., “At least one Lyapunov exponent vanishes if the trajectory of an attactor does not contain a fixed point”, Phys. Letts. A, 94:2 (1983), 71–72 | MR
[18] Khaken G., Sinergetika. Ierarkhiya neustoichivostei v samoorganizuyuschikhsya sistemakh i ustroistvakh, Mir, M., 1985 | MR
[19] Geist K., Parlitz U., Lauterborn W., “Comparison of different methods for computing Lyapunov exponents”, Progr. Theor. Phys., 83:5 (1990), 875–893 | DOI | MR | Zbl
[20] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory”, Meccanica, 15:1 (1980), 9–20 ; “Part 2: Numerical application”, 21–30 | DOI | MR | Zbl
[21] Tsertsvadze G. Z., “O skhodimosti raznostnykh skhem dlya uravneniya Kuramoto-Tsuzuki i dlya sistem tipa reaktsiya-diffuziya”, Zh. vychisl. matem. i matem. fiz., 31:5 (1991), 698–707 | MR